Bio-activity prediction of drug candidate compounds targeting SARS-Cov-2 using machine learning approaches

化学 公共化学 化学信息学 药物发现 机器学习 人工智能 计算机科学 虚拟筛选 生物信息学 计算生物学 数据挖掘 生物信息学 生物 生物化学 基因
作者
Faisal Bin Ashraf,Sanjida Akter,Sumona Hoque Mumu,Muhammad Usama Islam,Jasim Uddin
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:18 (9): e0288053-e0288053 被引量:9
标识
DOI:10.1371/journal.pone.0288053
摘要

The SARS-CoV-2 3CLpro protein is one of the key therapeutic targets of interest for COVID-19 due to its critical role in viral replication, various high-quality protein crystal structures, and as a basis for computationally screening for compounds with improved inhibitory activity, bioavailability, and ADMETox properties. The ChEMBL and PubChem database contains experimental data from screening small molecules against SARS-CoV-2 3CLpro, which expands the opportunity to learn the pattern and design a computational model that can predict the potency of any drug compound against coronavirus before in-vitro and in-vivo testing. In this study, Utilizing several descriptors, we evaluated 27 machine learning classifiers. We also developed a neural network model that can correctly identify bioactive and inactive chemicals with 91% accuracy, on CheMBL data and 93% accuracy on combined data on both CheMBL and Pubchem. The F1-score for inactive and active compounds was 93% and 94%, respectively. SHAP (SHapley Additive exPlanations) on XGB classifier to find important fingerprints from the PaDEL descriptors for this task. The results indicated that the PaDEL descriptors were effective in predicting bioactivity, the proposed neural network design was efficient, and the Explanatory factor through SHAP correctly identified the important fingertips. In addition, we validated the effectiveness of our proposed model using a large dataset encompassing over 100,000 molecules. This research employed various molecular descriptors to discover the optimal one for this task. To evaluate the effectiveness of these possible medications against SARS-CoV-2, more in-vitro and in-vivo research is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到 ,获得积分10
1秒前
4秒前
8秒前
科研专家完成签到 ,获得积分10
12秒前
right完成签到 ,获得积分10
13秒前
haiwei完成签到 ,获得积分10
16秒前
17秒前
佳言2009完成签到,获得积分10
17秒前
22秒前
wangqinlei发布了新的文献求助10
23秒前
25秒前
你才是小哭包完成签到 ,获得积分10
25秒前
我我我完成签到,获得积分10
25秒前
26秒前
干净三德发布了新的文献求助10
27秒前
30秒前
30秒前
32秒前
32秒前
33秒前
可爱的函函应助干净三德采纳,获得10
34秒前
邺水朱华发布了新的文献求助10
36秒前
Danish完成签到,获得积分10
36秒前
CC发布了新的文献求助20
37秒前
兴钬完成签到 ,获得积分10
37秒前
优雅莞完成签到,获得积分10
38秒前
38秒前
40秒前
40秒前
落后妖妖发布了新的文献求助10
45秒前
邺水朱华完成签到,获得积分20
50秒前
落后妖妖完成签到,获得积分10
53秒前
cp3xzh完成签到,获得积分10
53秒前
xuan完成签到,获得积分10
53秒前
如履平川完成签到 ,获得积分10
53秒前
阿拉完成签到,获得积分10
1分钟前
1分钟前
qqJing完成签到,获得积分10
1分钟前
hhhh完成签到 ,获得积分10
1分钟前
unowhoiam完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798537
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679740
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353