An Online Remaining Useful Life Prediction Method With Adaptive Degradation Model Calibration

降级(电信) 校准 概率密度函数 计算机科学 参数统计 可靠性工程 参数化模型 数据建模 工程类 统计 数学 电信 数据库
作者
Chao Ren,Tianmei Li,Zhengxin Zhang,Xiaosheng Si,Lei Feng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (23): 29774-29792
标识
DOI:10.1109/jsen.2023.3322135
摘要

At present, there are extensive studies on remaining useful life (RUL) prediction based on degradation modeling of sensor data. However, most existing degradation models have fixed functional forms and only update the parameters for calibration. In practice, due to the influence of individual variability and dynamic environmental conditions, simply updating the model parameters may render a mismatch between degradation models with the degradation process of in-service equipment and, thus, results in bias or even errors in the predicted RUL. In this article, we propose an online RUL prediction method with adaptive model calibration for stochastic degrading equipment. The initial degradation model constructed from the historical data has been used to predict the future degradation trend, and a threshold-based triggering mechanism is then designed to determine the calibration moment for function form. A parametric model for the degradation prediction errors is established to realize calibration of the function form of the degradation model. Furthermore, the model parameters are updated online by a Bayesian method based on the degradation data of in-service equipment for the model parameters’ calibration. As such, the proposed method allows us to achieve joint adaptive calibration of both the functional form and parameters of the degradation model. Based on the calibrated model, the probability density function (pdf) of the RUL is derived in the sense of the first hitting time (FHT) to realize RUL prediction. The effectiveness and superiority of the proposed method are validated by both numerical simulations and a case study of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的傲薇完成签到 ,获得积分10
2秒前
cdercder应助大佬采纳,获得10
2秒前
zhx245259630完成签到,获得积分10
3秒前
kong完成签到,获得积分10
3秒前
stretchability完成签到,获得积分10
3秒前
3秒前
4秒前
MZ完成签到,获得积分0
5秒前
小虫虫完成签到,获得积分10
6秒前
知性的水杯完成签到 ,获得积分10
7秒前
拓跋书芹发布了新的文献求助10
7秒前
包包酱完成签到,获得积分10
8秒前
8秒前
cfsyyfujia完成签到 ,获得积分10
9秒前
QZZ发布了新的文献求助10
9秒前
g7001完成签到,获得积分10
10秒前
渡劫完成签到,获得积分10
10秒前
rarfen完成签到,获得积分10
10秒前
言余完成签到,获得积分10
11秒前
西瓜呱呱呱完成签到,获得积分10
12秒前
冬雪完成签到 ,获得积分10
14秒前
tesla发布了新的文献求助10
14秒前
自由以亦完成签到,获得积分10
16秒前
yt完成签到,获得积分10
16秒前
woommoow完成签到,获得积分10
16秒前
雨恋凡尘完成签到,获得积分0
16秒前
sdfsdf完成签到 ,获得积分10
16秒前
我是老大应助fx采纳,获得10
17秒前
koveronica完成签到,获得积分10
18秒前
小鑫应助yygz0703采纳,获得10
18秒前
思源应助koveronica采纳,获得10
23秒前
俭朴的世界完成签到 ,获得积分10
23秒前
缓慢晟睿完成签到,获得积分10
23秒前
雪白胡萝卜完成签到,获得积分10
23秒前
顾大喵完成签到,获得积分10
25秒前
25秒前
斯文的芹菜完成签到 ,获得积分10
25秒前
MIST完成签到,获得积分10
26秒前
KJ完成签到,获得积分10
26秒前
lbx完成签到,获得积分10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
流量测量节流装置设计手册 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833960
求助须知:如何正确求助?哪些是违规求助? 3376399
关于积分的说明 10493040
捐赠科研通 3095903
什么是DOI,文献DOI怎么找? 1704778
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859