Friend or Foe? Teaming Between Artificial Intelligence and Workers with Variation in Experience

资历 生产力 知识工作者 知识管理 图表 心理学 计算机科学 人工智能 工作(物理) 工程类 经济 机械工程 统计 数学 宏观经济学 航空航天工程
作者
Weiguang Wang,Guodong Gao,Ritu Agarwal
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:46
标识
DOI:10.1287/mnsc.2021.00588
摘要

As artificial intelligence (AI) applications become more pervasive, it is critical to understand how knowledge workers with different levels and types of experience can team with AI for productivity gains. We focus on the influence of two major types of human work experience (narrow experience based on the specific task volume and broad experience based on seniority) on the human-AI team dynamics. We developed an AI solution for medical chart coding in a publicly traded company and conducted a field study among the knowledge workers. Based on a detailed analysis performed at the medical chart level, we find evidence that AI benefits workers with greater task-based experience, but senior workers gain less from AI than their junior colleagues. Further investigation reveals that the relatively lower productivity lift from AI is not a result of seniority per se but lower trust in AI, likely triggered by the senior workers’ broader job responsibilities. This study provides new empirical insights into the differential roles of worker experience in the collaborative dynamics between AI and knowledge workers, which have important societal and business implications. This paper was accepted by Kartik Hosanagar, information systems. Funding: This work was supported by Inovalon [Sponsor of the Health Insights AI Laboratory]. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2021.00588 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注白昼应助科研通管家采纳,获得20
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
一路硕博应助科研通管家采纳,获得10
1秒前
无花果应助小巧的巨人采纳,获得10
2秒前
bzp完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
ding应助南风采纳,获得10
6秒前
Karol关注了科研通微信公众号
6秒前
7秒前
goldNAN完成签到,获得积分10
7秒前
韶冷梅完成签到,获得积分20
7秒前
8秒前
8秒前
不懂发布了新的文献求助10
8秒前
顾矜应助斑比采纳,获得10
8秒前
yaoyao发布了新的文献求助10
9秒前
百里健柏完成签到,获得积分10
10秒前
10秒前
11秒前
李健的小迷弟应助戴岱采纳,获得10
11秒前
稳重萃应助滚筒洗衣机采纳,获得10
13秒前
14秒前
米六发布了新的文献求助10
14秒前
小魏不学无术完成签到,获得积分10
15秒前
健康的绮晴完成签到,获得积分10
15秒前
可爱的函函应助李菲采纳,获得10
16秒前
17秒前
顿立男关注了科研通微信公众号
17秒前
大模型应助梦想采纳,获得10
17秒前
欣欣发布了新的文献求助10
17秒前
Hello应助肖遥采纳,获得30
18秒前
poker84完成签到,获得积分10
18秒前
xj关闭了xj文献求助
18秒前
19秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905842
求助须知:如何正确求助?哪些是违规求助? 3451393
关于积分的说明 10864520
捐赠科研通 3176753
什么是DOI,文献DOI怎么找? 1754991
邀请新用户注册赠送积分活动 848619
科研通“疑难数据库(出版商)”最低求助积分说明 791153