Intelligent neuromarketing framework for consumers' preference prediction from electroencephalography signals and eye tracking

神经营销 眼动 脑电图 计算机科学 偏爱 背景(考古学) 心理学 品酒 人机交互 人工智能 广告 神经科学 葡萄酒 业务 古生物学 物理 光学 经济 生物 微观经济学
作者
Fazla Rabbi Mashrur,Khandoker Mahmudur Rahman,Mohammad Tohidul Islam Miya,Ravi Vaidyanathan,Syed Ferhat Anwar,Farhana Sarker,Khondaker A. Mamun
出处
期刊:Journal of Consumer Behaviour [Wiley]
卷期号:23 (3): 1146-1157 被引量:13
标识
DOI:10.1002/cb.2253
摘要

Abstract Neuromarketing uses brain‐computer interface technology to understand customer preferences in response to marketing stimuli. Every year, marketing professionals spend over $750 Billion (US dollars) on traditional marketing, which is usually behavioral and subjective, focusing on self‐reports acquired via questionnaires, focus groups, and depth interviews. Neuromarketing, on the other hand, promises to overcome such limitations. This work proposes a machine learning framework that incorporates multiple components (endorsement, offer, and slogan) in real advertisement to predict consumer preference from electroencephalography (EEG) signals. In addition, we also use eye‐tracking data to visualize consumer viewing patterns according to both advertisement type and preference. EEG signals are collected from 22 healthy volunteers while viewing the real ads as stimuli. After preprocessing the signals, three‐domain features are extracted (time, frequency, and time‐frequency). Then, using wrapper‐based approaches we choose best features which are later classified into strong and weak preferences using the support vector machine. The experimental results demonstrate the best performance using all the frontal channels with an accuracy of 96.97%, sensitivity of 96.30%, and specificity of 97.44%. Additionally, eye tracking data reveals that subjects substantially prefer an ad, when they first glance at the endorsement. In addition, people tend to blink their eyes less frequently while viewing ads with endorsements and strongly prefer these commercials too. Additionally, our work lays the door for deploying such a neuromarketing framework in a real‐world context by employing consumer‐grade EEG equipment. Therefore, it is evident that neuromarketing technology may assist brands and companies in accurately predicting future customer preferences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Crazyer完成签到,获得积分10
2秒前
2秒前
Likx发布了新的文献求助10
2秒前
美满熊猫完成签到,获得积分10
2秒前
3秒前
potato511完成签到,获得积分10
3秒前
打打应助打工科研采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
健忘的冰蝶发布了新的文献求助100
5秒前
No1sugar发布了新的文献求助10
6秒前
zyq发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
5114发布了新的文献求助10
7秒前
爆米花应助Lemon采纳,获得10
7秒前
7秒前
姚静怡完成签到,获得积分10
7秒前
吴天姿发布了新的文献求助80
7秒前
怀南发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
winfree完成签到 ,获得积分10
8秒前
一切顺利完成签到,获得积分10
8秒前
zhaolee完成签到 ,获得积分10
8秒前
9秒前
Mason发布了新的文献求助10
9秒前
天天快乐应助破绽采纳,获得10
9秒前
卫梦亚应助王志远采纳,获得10
9秒前
时空路人完成签到,获得积分10
9秒前
田博文应助包容的以彤采纳,获得10
9秒前
10秒前
Wyd2000发布了新的文献求助10
10秒前
11秒前
读研读研发布了新的文献求助10
11秒前
ACY完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779