Multimode optical fiber sensors: from conventional to machine learning-assisted

多模光纤 计算机科学 光纤传感器 光纤 人工智能 电信
作者
Kun Wang,Yosuke Mizuno,Xingchen Dong,Wolfgang Kurz,Michael H. Köhler,P. Kienle,Heeyoung Lee,Martin Jakobi,Alexander W. Koch
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 022002-022002 被引量:17
标识
DOI:10.1088/1361-6501/ad0318
摘要

Abstract Multimode fiber (MMF) sensors have been extensively developed and utilized in various sensing applications for decades. Traditionally, the performance of MMF sensors was improved by conventional methods that focused on structural design and specialty fibers. However, in recent years, the blossom of machine learning techniques has opened up new avenues for enhancing the performance of MMF sensors. Unlike conventional methods, machine learning techniques do not require complex structures or rare specialty fibers, which reduces fabrication difficulties and lowers costs. In this review, we provide an overview of the latest developments in MMF sensors, ranging from conventional methods to those assisted by machine learning. This article begins by categorizing MMF sensors based on their sensing applications, including temperature and strain sensors, displacement sensors, refractive index sensors, curvature sensors, bio/chemical sensors, and other sensors. Their distinct sensor structures and sensing properties are thoroughly reviewed. Subsequently, the machine learning-assisted MMF sensors that have been recently reported are analyzed and categorized into two groups: learning the specklegrams and learning the spectra. The review provides a comprehensive discussion and outlook on MMF sensors, concluding that they are expected to be utilized in a wide range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助心信鑫采纳,获得30
1秒前
2秒前
Justtry发布了新的文献求助10
3秒前
送我上青云应助六六采纳,获得10
3秒前
老詹头发布了新的文献求助10
4秒前
4秒前
终抵星空完成签到,获得积分10
5秒前
11100发布了新的文献求助10
5秒前
7秒前
刻苦雪莲发布了新的文献求助10
8秒前
8秒前
tkxfy完成签到,获得积分10
9秒前
老詹头完成签到,获得积分10
9秒前
水果完成签到,获得积分10
9秒前
10秒前
12秒前
南浔完成签到,获得积分10
12秒前
sherry发布了新的文献求助10
12秒前
刻苦雪莲完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助典雅的俊驰采纳,获得10
14秒前
mumu发布了新的文献求助10
15秒前
直率的鸿完成签到,获得积分10
15秒前
17秒前
宋宋不迷糊完成签到 ,获得积分10
17秒前
18秒前
19秒前
zoey完成签到,获得积分10
19秒前
20秒前
sonya应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461758
求助须知:如何正确求助?哪些是违规求助? 4566679
关于积分的说明 14306872
捐赠科研通 4492604
什么是DOI,文献DOI怎么找? 2461059
邀请新用户注册赠送积分活动 1450117
关于科研通互助平台的介绍 1425669