EEGAlzheimer’sNet: Development of transformer-based attention long short term memory network for detecting Alzheimer disease using EEG signal

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 深度学习 脑电图 小波 循环神经网络 人工神经网络 心理学 精神科
作者
Dileep kumar Ravikanti,S. Saravanan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105318-105318 被引量:16
标识
DOI:10.1016/j.bspc.2023.105318
摘要

A previous diagnosis of Alzheimer's disease (AD) in its initial stages is needed for patient care because it helps patients adopt preventative measures before irreversible brain damage occurs. Several studies have used computers to detect AD, although hereditary results limit most computer detection methods. There is no straightforward method to screen for AD, partly because the condition is difficult to diagnose and sometimes requires costly and occasionally intrusive testing that is uncommon outside of highly specialized clinical settings. Therefore, this study implements a deep learning strategy for detecting AD with the help of the "Electroencephalogram (EEG)" signal. Initially, the required EEG signal is obtained from traditional online databases and then applied to the 3-level "Lifting Wavelet Transform (LWT)" decomposition to decompose the signal into many wavelets. From the decomposed signal, the temporal features are retrieved by a "Recurrent Neural Network (RNN)", and the spatial features are extracted from a "Multi-scale dilated Convolutional Neural Network (CNN)". Further, the Enhanced Wild Geese Lemurs Optimizer (EWGLO) algorithm is implemented to find the optimal weight value for acquiring the weighted stacked features. These resultant weighted stacked features are applied to the semi-detection stage, where the "Optimized Transformer-based Attention Long Short Term Memory (OTA-LSTM)" model is utilized to detect AD. In the detection stage, parameter optimization takes place to increase the performance of the detection process using the same EWGLO. The designed model is validated with various performance metrics to show the effective outcome. Moreover, the developed model attains 96% and 98% in terms of accuracy and MCC. Throughout the validation, the offered model shows enriched performance when compared with other-state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助岳小龙采纳,获得30
刚刚
二猫完成签到,获得积分10
刚刚
在水一方应助WeiBao采纳,获得10
刚刚
Jie_huang发布了新的文献求助10
2秒前
DJY完成签到,获得积分10
2秒前
禹代秋完成签到,获得积分10
3秒前
3秒前
曾鸣发布了新的文献求助10
3秒前
eterny完成签到,获得积分10
3秒前
科研通AI5应助123456采纳,获得10
4秒前
5秒前
SYLH应助岳小龙采纳,获得30
5秒前
标致靖仇关注了科研通微信公众号
5秒前
5秒前
5秒前
开朗曲奇发布了新的文献求助10
6秒前
6秒前
7秒前
DX发布了新的文献求助30
9秒前
10秒前
酷波er应助SATone采纳,获得10
12秒前
leah发布了新的文献求助10
13秒前
Freddie完成签到,获得积分10
13秒前
14秒前
Fu付完成签到,获得积分10
15秒前
16秒前
sommer12345完成签到 ,获得积分10
16秒前
17秒前
18秒前
19秒前
lllllllulu完成签到,获得积分10
19秒前
20秒前
20秒前
烤肠完成签到 ,获得积分20
21秒前
Fu付发布了新的文献求助10
21秒前
21秒前
xiaoyuan发布了新的文献求助10
22秒前
genova发布了新的文献求助10
23秒前
曾鸣发布了新的文献求助10
24秒前
yuan发布了新的文献求助10
24秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820866
求助须知:如何正确求助?哪些是违规求助? 3363847
关于积分的说明 10425478
捐赠科研通 3082293
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815144
科研通“疑难数据库(出版商)”最低求助积分说明 768982