MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy

计算机科学 人工智能 杠杆(统计) 卷积神经网络 深度学习 机器学习 源代码 均方误差 数据挖掘 数学 统计 操作系统
作者
Kai-Yang Zhong,Meng‐Liang Wen,Fanfang Meng,Xin Li,Bei Jiang,Xin Zeng,Yi Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2878-2888 被引量:14
标识
DOI:10.1021/acs.jcim.3c00866
摘要

The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到 ,获得积分10
刚刚
小蘑菇应助背后的伊采纳,获得10
刚刚
CUN完成签到,获得积分10
2秒前
4秒前
Owen应助AdnanKhan采纳,获得10
4秒前
梁成伟完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
甜蜜的楷瑞应助lg采纳,获得10
6秒前
刘盈完成签到,获得积分20
8秒前
jor666发布了新的文献求助10
9秒前
Jasper应助年年采纳,获得10
10秒前
10秒前
Rui发布了新的文献求助10
10秒前
孙一一完成签到 ,获得积分10
11秒前
zwj关闭了zwj文献求助
12秒前
13秒前
lironghao完成签到,获得积分10
14秒前
yuyu发布了新的文献求助10
15秒前
16秒前
17秒前
嘿咻发布了新的文献求助10
18秒前
思源应助lironghao采纳,获得10
19秒前
22秒前
sy发布了新的文献求助10
22秒前
响铃完成签到,获得积分10
23秒前
23秒前
25秒前
嘿咻完成签到,获得积分10
25秒前
27秒前
28秒前
29秒前
29秒前
宋映梦完成签到 ,获得积分10
29秒前
lironghao发布了新的文献求助10
31秒前
32秒前
陈醒醒发布了新的文献求助10
32秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046092
求助须知:如何正确求助?哪些是违规求助? 3583836
关于积分的说明 11390716
捐赠科研通 3311111
什么是DOI,文献DOI怎么找? 1822153
邀请新用户注册赠送积分活动 894354
科研通“疑难数据库(出版商)”最低求助积分说明 816171