MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy

计算机科学 人工智能 杠杆(统计) 卷积神经网络 深度学习 机器学习 源代码 均方误差 数据挖掘 数学 统计 操作系统
作者
Kunhua Zhong,Meng‐Liang Wen,Fanfang Meng,Xin Li,Bei Jiang,Xin Zeng,Yi Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2878-2888 被引量:8
标识
DOI:10.1021/acs.jcim.3c00866
摘要

The prediction of the drug-target affinity (DTA) plays an important role in evaluating molecular druggability. Although deep learning-based models for DTA prediction have been extensively attempted, there are rare reports on multimodal models that leverage various fusion strategies to exploit heterogeneous information from multiple different modalities of drugs and targets. In this study, we proposed a multimodal deep model named MMDTA, which integrated the heterogeneous information from various modalities of drugs and targets using a hybrid fusion strategy to enhance DTA prediction. To achieve this, MMDTA first employed convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to extract diverse heterogeneous information from the sequences and structures of drugs and targets. It then utilized a hybrid fusion strategy to combine and complement the extracted heterogeneous information, resulting in the fused modal information for predicting drug-target affinity through the fully connected (FC) layers. Experimental results demonstrated that MMDTA outperformed the competitive state-of-the-art deep learning models on the widely used benchmark data sets, particularly with a significantly improved key evaluation metric, Root Mean Square Error (RMSE). Furthermore, MMDTA exhibited excellent generalization and practical application performance on multiple different data sets. These findings highlighted MMDTA's accuracy and reliability in predicting the drug-target binding affinity. For researchers interested in the source data and code, they are accessible at http://github.com/dldxzx/MMDTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sweety柠檬酱完成签到,获得积分10
刚刚
Lucas应助yunsww采纳,获得10
1秒前
1秒前
nini完成签到,获得积分10
3秒前
kx完成签到,获得积分10
5秒前
爱雨霁发布了新的文献求助10
5秒前
莱特昊发布了新的文献求助10
6秒前
天下发布了新的文献求助10
6秒前
Vegetable_Dog完成签到,获得积分10
7秒前
7秒前
大模型应助小俊采纳,获得10
7秒前
8秒前
8秒前
CodeCraft应助刘锋锋采纳,获得10
10秒前
清脆臻完成签到,获得积分20
10秒前
聆听雨完成签到,获得积分10
10秒前
11秒前
包飞雪完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
爱雨霁完成签到,获得积分10
14秒前
泡泡糖发布了新的文献求助10
14秒前
科研通AI5应助健忘的含卉采纳,获得10
15秒前
15秒前
qwerasd完成签到,获得积分20
16秒前
16秒前
卢小白完成签到,获得积分10
16秒前
16秒前
善学以致用应助梅零落采纳,获得10
17秒前
17秒前
17秒前
xym发布了新的文献求助10
18秒前
idid发布了新的文献求助10
18秒前
泡泡糖完成签到,获得积分10
19秒前
khurram完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793552
求助须知:如何正确求助?哪些是违规求助? 3338512
关于积分的说明 10289946
捐赠科研通 3054952
什么是DOI,文献DOI怎么找? 1676225
邀请新用户注册赠送积分活动 804261
科研通“疑难数据库(出版商)”最低求助积分说明 761812