A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning

微电网 强化学习 计算机科学 可再生能源 调度(生产过程) 荷电状态 背景(考古学) 数学优化 工程类 功率(物理) 电池(电) 人工智能 古生物学 物理 数学 量子力学 电气工程 生物
作者
Md. Shadman Abid,Hasan Jamil Apon,Salman Hossain,Ashik Ahmed,Razzaqul Ahshan,Molla Shahadat Hossain Lipu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:353: 122029-122029 被引量:22
标识
DOI:10.1016/j.apenergy.2023.122029
摘要

Multi-agent deep reinforcement learning (MADRL) approaches are at the forefront of contemporary research in optimum electric vehicle (EV) charging scheduling challenges. These techniques involve multiple agents that respond to a dynamic simulation environment to strategically integrate EV charging stations (EVCSs) on microgrids by incorporating the constraints posed by stochastic trip durations. In addition, recent research works have demonstrated that planning frameworks based on multi-objective optimization (MOO) techniques are suitable for the efficient functioning of microgrids comprising renewable energy sources (RESs) and battery energy storage systems (BESSs). Even though MADRL techniques have been used to solve the optimum EV charging scheduling challenges and MOO frameworks have been developed to determine the optimal RES-BESS allocation, the potential of merging MADRL and MOO is yet to be explored. Therefore, this research provides an opportunity to determine the effectiveness of combined MOO-MADRL dynamics and their computational efficacy. In this context, this work presents a novel Multi-objective Artificial Vultures Optimization Algorithm based on Multi-agent Deep Deterministic Policy Gradient (MOAVOA-MADDPG) planning framework for allocating RESs, BESSs, and EVCSs on microgrids. The objective function is formulated to optimize the network power losses, total installation and operational costs, greenhouse gas emissions, and system voltage stability. Moreover, the proposed framework incorporates the sporadic nature of RES systems and intends to improve the state of charge (SOC) of the EVs present in the network. The presented approach is validated using practical weather data and EV commuting behavior on the modified IEEE 33 bus network, two practical distribution feeders in Bangladesh, and the Turkish 141 bus network. According to the findings, the MOAVOA-MADDPG framework effectively accommodated the financial, technical, and environmental considerations with improved average SOC of the vehicles. Furthermore, statistical analysis, spacing, convergence, and hyper-volume metrics are employed to compare the suggested MOAVOA-MADDPG framework with five contemporary techniques. The findings indicate that, in every metric considered, the MOAVOA-MADDPG Pareto fronts provide superior solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13333发布了新的文献求助10
2秒前
冰魂应助浮元子采纳,获得30
2秒前
lllwww完成签到,获得积分10
3秒前
3秒前
oboy应助科研通管家采纳,获得10
4秒前
oboy应助科研通管家采纳,获得10
4秒前
科研通AI5应助雪梅采纳,获得30
5秒前
唔西迪西发布了新的文献求助10
6秒前
6秒前
称心的蛟凤完成签到,获得积分10
7秒前
zw完成签到,获得积分0
7秒前
震动的听枫完成签到,获得积分10
7秒前
无花果应助dragonking520采纳,获得10
7秒前
VE完成签到,获得积分10
10秒前
10秒前
13333完成签到,获得积分10
11秒前
molo发布了新的文献求助10
11秒前
Diego完成签到,获得积分10
13秒前
clyhg完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
yoowt发布了新的文献求助10
16秒前
16秒前
17秒前
发C刊的人完成签到 ,获得积分10
17秒前
完美世界应助LL采纳,获得10
17秒前
cqcqcq完成签到 ,获得积分10
19秒前
SciGPT应助常小敏采纳,获得10
19秒前
20秒前
22秒前
三杠发布了新的文献求助10
22秒前
23秒前
周周发布了新的文献求助10
25秒前
25秒前
Leucalypt发布了新的文献求助10
26秒前
26秒前
顾矜应助yoowt采纳,获得10
29秒前
iY发布了新的文献求助10
30秒前
aaaaa发布了新的文献求助10
30秒前
火星上雨珍完成签到,获得积分10
31秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867092
求助须知:如何正确求助?哪些是违规求助? 3409334
关于积分的说明 10663193
捐赠科研通 3133480
什么是DOI,文献DOI怎么找? 1728248
邀请新用户注册赠送积分活动 832848
科研通“疑难数据库(出版商)”最低求助积分说明 780510