Improving Particle Filters with Adaptive Bayesian Resampling for Real-Time Filtering

重采样 颗粒过滤器 计算机科学 序贯估计 算法 计算 集合(抽象数据类型) 人工智能 卡尔曼滤波器 程序设计语言
作者
Shuanglong Liu,Mingzhu Xie,Ho-Cheung Ng,Haoting Guo,Xiang Li
标识
DOI:10.1109/icsip57908.2023.10271041
摘要

Particle filters (PFs) are a set of simulation-based methods, which recursively estimate the posterior densities by a set of weighted samples. Due to their sample-based representation, PFs are well suited to estimate the state of non-linear dynamic systems. The increased representational power of PFs, however, comes at the cost of higher computational complexity. Thus, it has been challenging to apply PFs in real-time applications such as target tracking. In this paper, we propose the design of PFs with two novel Bayesian resampling methods which are well suited for parallel execution. The resampling algorithms are further improved for speed consideration to allow for real-time filtering. We then propose the design of PFs with adaptive resampling performed during the filtering, in order to increase the estimation accuracy as well as the speed. The proposed method is evaluated with a well-known tracking problem. Experimental results confirm that PFs with the proposed resampling algorithms achieve similar localization accuracy compared to the traditional resampling methods, while improving the speed considerably. PFs with the adaptive resampling by the computation of effective sample size (ESS) can further improve the accuracy, up to 12% in comparison with traditional filtering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要学习完成签到,获得积分10
3秒前
lvlijun应助欣喜的人龙采纳,获得10
3秒前
火星上的听云完成签到,获得积分10
3秒前
3秒前
lan完成签到,获得积分10
6秒前
redamancy完成签到 ,获得积分10
6秒前
7秒前
有魅力的乐珍完成签到 ,获得积分10
7秒前
11发布了新的文献求助10
7秒前
Jasper应助复杂的绮波采纳,获得10
9秒前
10秒前
积极芷容发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
15秒前
15秒前
16秒前
风格完成签到,获得积分10
17秒前
不能没有科研完成签到,获得积分10
18秒前
18秒前
迷路的曼梅完成签到,获得积分10
19秒前
灰底爆米花完成签到,获得积分10
19秒前
没有熬夜发布了新的文献求助10
19秒前
sci发布了新的文献求助10
20秒前
20秒前
21秒前
cc发布了新的文献求助10
21秒前
小鱼发布了新的文献求助10
23秒前
lxd621478完成签到,获得积分10
23秒前
Hello应助迷你的水香采纳,获得10
23秒前
沉静篮球发布了新的文献求助10
24秒前
小啤发布了新的文献求助10
24秒前
星辰大海应助狂野的玉米采纳,获得10
25秒前
27秒前
27秒前
Southluuu发布了新的文献求助10
28秒前
qian72133完成签到,获得积分10
28秒前
烟花应助积极芷容采纳,获得10
30秒前
迷人寒梦完成签到 ,获得积分10
31秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062952
求助须知:如何正确求助?哪些是违规求助? 3601444
关于积分的说明 11437967
捐赠科研通 3324713
什么是DOI,文献DOI怎么找? 1827766
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997