控制理论(社会学)
模型预测控制
弹道
稳健性(进化)
控制器(灌溉)
计算机科学
非线性系统
鲁棒控制
控制工程
工程类
控制系统
控制(管理)
人工智能
物理
化学
量子力学
生物
农学
基因
生物化学
天文
电气工程
作者
Zheping Yan,Jinyu Yan,Sijia Cai,Yuyang Yu,Yifan Wu
标识
DOI:10.1016/j.oceaneng.2023.115617
摘要
A robust model predictive control (MPC) method with dual closed-loops is presented to handle trajectory tracking of autonomous underwater vehicle (AUV) with uncertain model parameters and random external perturbations. First, constraint conditions are set for the motion state and control input of the underwater vehicle based on its motion characteristics. The position controller takes the velocity increment as input, thus providing a smoothly varying desired velocity for the velocity controller. The velocity controller comprises nominal MPC and a nonlinear auxiliary control law to overcome the effect of random perturbations on AUV tracking control. Then, a finite-time extended state observer (FTESO) is designed to compensate for dynamic model uncertainty. Furthermore, Lyapunov stability theory is employed to analyse the stability of the controller and FTESO. Ultimately, through comparative simulation experiments, the proposed control framework's effectiveness and robustness are verified, proving it to be a feasible AUV trajectory tracking control method.
科研通智能强力驱动
Strongly Powered by AbleSci AI