Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images

分割 稳健性(进化) 计算机科学 精准农业 人工智能 多光谱图像 编码器 人工神经网络 卷积神经网络 深度学习 图像分割 模式识别(心理学) 农业 生态学 生物化学 化学 生物 基因 操作系统
作者
Panli Zhang,Xiaobo Sun,Donghui Zhang,Yuechao Yang,Zhenhua Wang
出处
期刊:Plant phenomics [AAAS00]
卷期号:5 被引量:12
标识
DOI:10.34133/plantphenomics.0123
摘要

Accurate segmentation and detection of rice seedlings is essential for precision agriculture and high-yield cultivation. However, current methods suffer from high computational complexity and poor robustness to different rice varieties and densities. This article proposes 2 lightweight neural network architectures, LW-Segnet and LW-Unet, for high-precision rice seedling segmentation. The networks adopt an encoder-decoder structure with hybrid lightweight convolutions and spatial pyramid dilated convolutions, achieving accurate segmentation while reducing model parameters. Multispectral imagery acquired by unmanned aerial vehicle (UAV) was used to train and test the models covering 3 rice varieties and different planting densities. Experimental results demonstrate that the proposed LW-Segnet and LW-Unet models achieve higher F1-scores and intersection over union values for seedling detection and row segmentation across varieties, indicating improved segmentation accuracy. Furthermore, the models exhibit stable performance when handling different varieties and densities, showing strong robustness. In terms of efficiency, the networks have lower graphics processing unit memory usage, complexity, and parameters but faster inference speeds, reflecting higher computational efficiency. In particular, the fast speed of LW-Unet indicates potential for real-time applications. The study presents lightweight yet effective neural network architectures for agricultural tasks. By handling multiple rice varieties and densities with high accuracy, efficiency, and robustness, the models show promise for use in edge devices and UAVs to assist precision farming and crop management. The findings provide valuable insights into designing lightweight deep learning models to tackle complex agricultural problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
kk完成签到,获得积分10
刚刚
刚刚
x跳完成签到,获得积分10
刚刚
KQ完成签到,获得积分10
刚刚
BDB发布了新的文献求助10
刚刚
jack完成签到,获得积分10
刚刚
君子完成签到,获得积分10
刚刚
刚刚
Cyndilovetodrink完成签到,获得积分10
刚刚
赵小坤堃完成签到,获得积分10
1秒前
huminjie完成签到 ,获得积分10
1秒前
Chuwei完成签到 ,获得积分10
1秒前
英勇睫毛膏完成签到,获得积分20
1秒前
所所应助ly666采纳,获得10
2秒前
浮游应助科研通管家采纳,获得30
2秒前
浮游应助科研通管家采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
smile~发布了新的文献求助10
3秒前
李薇发布了新的文献求助10
3秒前
3秒前
朗朗书生发布了新的文献求助10
3秒前
雨姐科研应助旋风狗超人采纳,获得10
3秒前
3秒前
薄荷心完成签到 ,获得积分10
4秒前
4秒前
4秒前
zjcbk985发布了新的文献求助10
4秒前
hbb完成签到 ,获得积分10
4秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503863
求助须知:如何正确求助?哪些是违规求助? 4599332
关于积分的说明 14468093
捐赠科研通 4533261
什么是DOI,文献DOI怎么找? 2484291
邀请新用户注册赠送积分活动 1467531
关于科研通互助平台的介绍 1440323