Machine learning prediction models for different stages of non-small cell lung cancer based on tongue and tumor marker: a pilot study

舌头 随机森林 朴素贝叶斯分类器 人工智能 特征(语言学) 支持向量机 决策树 逻辑回归 计算机科学 相关性 肺癌 机器学习 医学 模式识别(心理学) 肿瘤科 病理 数学 哲学 语言学 几何学
作者
Yulin Shi,Hao Wang,Xinghua Yao,Jun Li,Jiayi Liu,Yuan Chen,Lingshuang Liu,Jiatuo Xu
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:23 (1) 被引量:5
标识
DOI:10.1186/s12911-023-02266-5
摘要

To analyze the tongue feature of NSCLC at different stages, as well as the correlation between tongue feature and tumor marker, and investigate the feasibility of establishing prediction models for NSCLC at different stages based on tongue feature and tumor marker.Tongue images were collected from non-advanced NSCLC patients (n = 109) and advanced NSCLC patients (n = 110), analyzed the tongue images to obtain tongue feature, and analyzed the correlation between tongue feature and tumor marker in different stages of NSCLC. On this basis, six classifiers, decision tree, logistic regression, SVM, random forest, naive bayes, and neural network, were used to establish prediction models for different stages of NSCLC based on tongue feature and tumor marker.There were statistically significant differences in tongue feature between the non-advanced and advanced NSCLC groups. In the advanced NSCLC group, the number of indexes with statistically significant correlations between tongue feature and tumor marker was significantly higher than in the non-advanced NSCLC group, and the correlations were stronger. Support Vector Machine (SVM), decision tree, and logistic regression among the machine learning methods performed poorly in models with different stages of NSCLC. Neural network, random forest and naive bayes had better classification efficiency for the data set of tongue feature and tumor marker and baseline. The models' classification accuracies were 0.767 ± 0.081, 0.718 ± 0.062, and 0.688 ± 0.070, respectively, and the AUCs were 0.793 ± 0.086, 0.779 ± 0.075, and 0.771 ± 0.072, respectively.There were statistically significant differences in tongue feature between different stages of NSCLC, with advanced NSCLC tongue feature being more closely correlated with tumor marker. Due to the limited information, single data sources including baseline, tongue feature, and tumor marker cannot be used to identify the different stages of NSCLC in this pilot study. In addition to the logistic regression method, other machine learning methods, based on tumor marker and baseline data sets, can effectively improve the differential diagnosis efficiency of different stages of NSCLC by adding tongue image data, which requires further verification based on large sample studies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
herococa应助botion采纳,获得10
1秒前
1秒前
美好南晴完成签到,获得积分10
2秒前
共享精神应助安然采纳,获得10
2秒前
科目三应助mulberry采纳,获得10
2秒前
4秒前
5秒前
orixero应助丹阳阳采纳,获得30
5秒前
5秒前
alile完成签到,获得积分20
7秒前
8秒前
flysky120完成签到,获得积分10
9秒前
9秒前
小婷发布了新的文献求助10
10秒前
10秒前
浅浪应助hint采纳,获得10
10秒前
OK绷完成签到,获得积分20
10秒前
Yanyu发布了新的文献求助10
10秒前
亭子完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
zy发布了新的文献求助10
11秒前
boltos发布了新的文献求助10
12秒前
nusiew发布了新的文献求助50
12秒前
栀盎发布了新的文献求助30
12秒前
12秒前
12秒前
科研通AI5应助唐诗鑫采纳,获得10
12秒前
动听煎饼发布了新的文献求助10
13秒前
棉花糖完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
順意完成签到,获得积分10
15秒前
乌漆嘛黑发布了新的文献求助10
17秒前
Dogged发布了新的文献求助10
17秒前
18秒前
风风发布了新的文献求助10
19秒前
Zbzb发布了新的文献求助10
19秒前
19秒前
852应助科研通管家采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4152596
求助须知:如何正确求助?哪些是违规求助? 3688552
关于积分的说明 11652514
捐赠科研通 3381140
什么是DOI,文献DOI怎么找? 1855529
邀请新用户注册赠送积分活动 917380
科研通“疑难数据库(出版商)”最低求助积分说明 830922