化学
过硫酸盐
电子转移
碳纳米管
污染物
高级氧化法
纳米管
化学工程
腐植酸
有机化学
材料科学
纳米技术
催化作用
工程类
肥料
作者
Jun Wang,LV Hao,Xiandong Tong,Wei Ren,Yi Shen,Lun Lu,Yang Zhang
标识
DOI:10.1016/j.jhazmat.2023.132334
摘要
In order to minimize the knowledge gap between single and binary pollutants degradation by persulfate-based advanced oxidation processes (PS-AOPs), iron-loaded N-doped carbon nanotubes (Fe-NCNT) and its acid-washing sample (Fe-NCNT-W) were synthesized as peroxymonosulfate (PMS) activator for simultaneous oxidation of acid orange 7 (AO7) and electron-rich (phenol/ibuprofen) or electron-deficient pollutants (nitrobenzene/benzoic acid). Mechanistic studies revealed that both radical (HO•, SO4•−) and nonradical (electron-transfer, high-valent iron) pathways involved for organic oxidation in Fe-NCNT/PMS system, while electron-transfer pathway (ETP) and high-valent iron-oxo species accounted for pollutant degradation at the surface and inner space of Fe-NCNT-W, respectively. The oxidation performances in single or binary systems were systematically investigated. In comparison to benchmark radical-based (Fe2+/PMS), nonradical ETP (NCNT/PMS) and mixed (Fe-NCNT/PMS) systems, Fe-NCNT-W/PMS outperformed superior performance toward oxidation of binary pollutants with little inference from solution pH or background substances, which could also be fabricated into membrane reactor for actual dyeing sewage treatment. Such superiorities should be mainly ascribed to the particular selectivity and intensive treatment of nonradical pathways in Fe-NCNT-W/PMS system with nanoconfinement effect. This work affords novel insights into the treatment of combined pollution via PMS activation by engineered nanomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI