Visual Classification via Description from Large Language Models

可解释性 计算机科学 人工智能 多样性(控制论) 构造(python库) 机器学习 自然语言处理 相似性(几何) 可扩展性 背景(考古学) 过程(计算) 图像(数学) 操作系统 古生物学 生物 程序设计语言 数据库
作者
Sachit Menon,Carl Vondrick
出处
期刊:Cornell University - arXiv 被引量:57
标识
DOI:10.48550/arxiv.2210.07183
摘要

Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
3秒前
泡芙完成签到 ,获得积分10
3秒前
绊宸完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助hcxhch采纳,获得10
4秒前
Dongcong完成签到,获得积分10
5秒前
5秒前
6秒前
FFFMMM123完成签到,获得积分20
7秒前
Zizi发布了新的文献求助30
7秒前
meta发布了新的文献求助10
7秒前
8秒前
9秒前
多多指教完成签到,获得积分10
9秒前
琰鷆发布了新的文献求助10
10秒前
nwj123654发布了新的文献求助10
10秒前
11秒前
文静完成签到,获得积分10
12秒前
领导范儿应助草莓灰灰采纳,获得10
13秒前
13秒前
YE完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
lily发布了新的文献求助10
16秒前
FashionBoy应助CucRuotThua采纳,获得10
16秒前
16秒前
大个应助Hisoka采纳,获得10
16秒前
华仔应助nwj123654采纳,获得10
17秒前
Zizi完成签到,获得积分20
17秒前
赘婿应助儒雅的不愁采纳,获得10
18秒前
Ammr完成签到 ,获得积分10
18秒前
戊戌发布了新的文献求助10
19秒前
19秒前
辛勤心情发布了新的文献求助10
19秒前
泰山球迷完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445