SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling

计算机科学 系列(地层学) 人工智能 任务(项目管理) 代表(政治) 时间序列 机器学习 简单(哲学) 深度学习 模式识别(心理学) 哲学 认识论 政治学 古生物学 经济 管理 法学 政治 生物
作者
Jiaxiang Dong,Haixu Wu,Haoran Zhang,Zhang Li,Jianmin Wang,Mingsheng Long
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2302.00861
摘要

Time series analysis is widely used in extensive areas. Recently, to reduce labeling expenses and benefit various tasks, self-supervised pre-training has attracted immense interest. One mainstream paradigm is masked modeling, which successfully pre-trains deep models by learning to reconstruct the masked content based on the unmasked part. However, since the semantic information of time series is mainly contained in temporal variations, the standard way of randomly masking a portion of time points will seriously ruin vital temporal variations of time series, making the reconstruction task too difficult to guide representation learning. We thus present SimMTM, a Simple pre-training framework for Masked Time-series Modeling. By relating masked modeling to manifold learning, SimMTM proposes to recover masked time points by the weighted aggregation of multiple neighbors outside the manifold, which eases the reconstruction task by assembling ruined but complementary temporal variations from multiple masked series. SimMTM further learns to uncover the local structure of the manifold, which is helpful for masked modeling. Experimentally, SimMTM achieves state-of-the-art fine-tuning performance compared to the most advanced time series pre-training methods in two canonical time series analysis tasks: forecasting and classification, covering both in- and cross-domain settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助zhut采纳,获得10
1秒前
bkagyin应助冷酷雅容采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
彭于晏应助壁虎君采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
Owen应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
ChrisKim完成签到,获得积分10
2秒前
pcr163应助科研通管家采纳,获得200
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
shi完成签到,获得积分10
4秒前
5秒前
5秒前
自信的书南完成签到,获得积分20
6秒前
jing完成签到,获得积分10
6秒前
云嘉懿完成签到,获得积分10
7秒前
7秒前
李李李发布了新的文献求助10
8秒前
Wjx完成签到,获得积分10
8秒前
8秒前
高分求助中
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
MATLAB在电子信息类专业中的应用 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213109
求助须知:如何正确求助?哪些是违规求助? 3747372
关于积分的说明 11790326
捐赠科研通 3414665
什么是DOI,文献DOI怎么找? 1873895
邀请新用户注册赠送积分活动 928156
科研通“疑难数据库(出版商)”最低求助积分说明 837480