换向器
双线性插值
数学
奇异积分
背景(考古学)
纯数学
不变(物理)
域代数上的
数学分析
积分方程
数学物理
统计
李共形代数
生物
古生物学
作者
Emil Airta,Kangwei Li,Henri Martikainen
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2301.13655
摘要
We develop both bilinear theory and commutator estimates in the context of entangled dilations, specifically Zygmund dilations $(x_1, x_2, x_3) \mapsto (\delta_1 x_1, \delta_2 x_2, \delta_1 \delta_2 x_3)$ in $\mathbb{R}^3$. We construct bilinear versions of recent dyadic multiresolution methods for Zygmund dilations and apply them to prove a paraproduct free $T1$ theorem for bilinear singular integrals invariant under Zygmund dilations. Independently, we prove linear commutator estimates even when the underlying singular integrals do not satisfy weighted estimates with Zygmund weights. This requires new paraproduct estimates.
科研通智能强力驱动
Strongly Powered by AbleSci AI