Unravelling electro-chemo-mechanical processes in graphite/silicon composites for designing nanoporous and microstructured battery electrodes

材料科学 石墨 纳米孔 电极 复合材料 电池(电) 纳米技术 光电子学 化学 量子力学 物理 物理化学 功率(物理)
作者
Xuekun Lu,Rhodri E. Owen,Wenjia Du,Zhenyu Zhang,Antonio Bertei,Roby Soni,Xun Zhang,Francesco Iacoviello,Daqing Li,Alice V. Llewellyn,Jianuo Chen,Han Zhang,Xuhui Yao,Qi Li,Yunlong Zhao,Shashidhara Marathe,Christoph Rau,Paul R. Shearing
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:20 (11): 1656-1666 被引量:2
标识
DOI:10.1038/s41565-025-02027-7
摘要

Abstract Silicon is a promising negative electrode material for high-energy batteries, but its volume changes during cell cycling cause rapid degradation, limiting its loading to about 10 wt.% in conventional graphite/Si composite electrodes. Overcoming this threshold requires evidence-based design for the formulation of advanced electrodes. Here we combine multimodal operando imaging techniques, assisted by structural and electrochemical characterizations, to elucidate the multiscale electro-chemo-mechanical processes in graphite/Si composite negative electrodes. We demonstrate that the electrochemical cycling stability of Si particles strongly depends on the design of intraparticle nanoscale porous structures, and the encapsulation and loss of active Si particles result in excessive charging current being directed to the graphite particles, increasing the risk of lithium plating. We also show that heterogeneous strains are present between graphite and Si particles, in the carbon-binder domain and the electrode’s porous structures. Focusing on the volume expansion of the electrode during electrochemical cycling, we prove that the rate performance and Si utilization are heavily influenced by the expansion of the carbon-binder domain and the decrease in porosity. Based on this acquired knowledge, we propose a tailored double-layer graphite/Si composite electrode design that exhibits lower polarization and capacity decay compared with conventional graphite/Si electrode formulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
呼斯勒应助科研通管家采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
whereisit应助科研通管家采纳,获得10
刚刚
刚刚
呼斯勒应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Jasper应助活力树叶采纳,获得10
2秒前
zhaoshuo发布了新的文献求助30
3秒前
华仔应助远帆江上采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
早上好章鱼哥完成签到 ,获得积分10
4秒前
打打应助咻咻采纳,获得10
4秒前
4秒前
荒年完成签到,获得积分10
6秒前
寻道图强应助Toby采纳,获得50
6秒前
小紫完成签到,获得积分10
6秒前
河豚宋完成签到,获得积分10
6秒前
6秒前
SciGPT应助打工肥仔采纳,获得20
9秒前
Jeneration完成签到 ,获得积分10
10秒前
小紫发布了新的文献求助10
11秒前
JamesPei应助xiayue采纳,获得10
11秒前
11秒前
今后应助斗南无花采纳,获得10
12秒前
wang完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
orixero应助67n采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774735
求助须知:如何正确求助?哪些是违规求助? 5619318
关于积分的说明 15436713
捐赠科研通 4907207
什么是DOI,文献DOI怎么找? 2640573
邀请新用户注册赠送积分活动 1588470
关于科研通互助平台的介绍 1543351