Spatio-temporal super-resolution reconstruction of particle image velocimetry-measured vortex flows using generative adversarial networks

作者
Lei Dong,Wenqiang Zhang,Dandan Xiao,Xuerui Mao
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:1022
标识
DOI:10.1017/jfm.2025.10775
摘要

High-resolution particle image velocimetry (PIV) particle-to-velocity analyses using small interrogation areas (IAs) often require substantial processing time. To overcome this limitation, a generative adversarial network (GAN)-based model is proposed to achieve spatio-temporal super-resolution (SR) reconstruction from low-resolution PIV data with large IAs, thereby significantly reducing post-processing time. Time-resolved PIV measurements of plasma-induced vortex flows, covering vortex formation, growth, transition and breakdown stages, are employed to train and evaluate the model with multi-scale vortical structures. By sequentially constructing spatial and temporal datasets, the GAN-based model enables reliable SR reconstruction at different scaling factors. Reconstruction accuracy is systematically assessed using time-averaged, instantaneous and phase-averaged velocity fields. At SR factors of $\times$ 4 and $\times$ 8, the reconstructed fields closely match high-resolution references, effectively capturing both fluctuating velocities and small-scale vortical structures. In contrast, $\times$ 16 reconstructions exhibit diminished accuracy due to the loss of fine-scale information from highly downsampled inputs. For time-averaged fields, high-resolution reconstructions reliably capture plasma jet characteristics at all SR factors. To enhance generalisation, transfer learning is introduced to fine tune the parameters of SR-related layers in the generator, enabling accurate reconstructions under varying vortex dynamics. In addition, the efficiency gains in PIV particle-to-velocity analysis and the fundamental limitations on achievable SR factors imposed by spatio-temporal data correlations are discussed. This study demonstrates that GAN-based spatio-temporal SR models offer a promising approach to accelerate PIV analyses while maintaining high reconstruction fidelity with diverse flow conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junzhuo Zhou完成签到,获得积分10
1秒前
vivian完成签到,获得积分10
1秒前
1秒前
kqd完成签到,获得积分10
1秒前
1秒前
flipped完成签到,获得积分10
2秒前
Oracle发布了新的文献求助10
2秒前
溏心完成签到,获得积分10
2秒前
科研通AI6应助乐观的海采纳,获得10
2秒前
3秒前
科研CY完成签到,获得积分10
3秒前
微糖给李lll的求助进行了留言
3秒前
4秒前
Poppy发布了新的文献求助10
4秒前
weirdo发布了新的文献求助10
4秒前
祁淑娴发布了新的文献求助10
4秒前
5秒前
jt完成签到 ,获得积分10
5秒前
Xiaoping发布了新的文献求助10
5秒前
大意的乐菱完成签到,获得积分10
5秒前
wyy完成签到,获得积分10
5秒前
qiyi93发布了新的文献求助10
6秒前
prince发布了新的文献求助50
6秒前
7秒前
NovermberRain完成签到,获得积分10
7秒前
YingSuhui完成签到 ,获得积分10
7秒前
7秒前
Estrella完成签到,获得积分10
8秒前
huang完成签到,获得积分10
9秒前
chowjb完成签到,获得积分0
9秒前
寒冷班发布了新的文献求助10
9秒前
zhaoda发布了新的文献求助20
9秒前
9秒前
9秒前
湘之灵若发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助勤劳钧采纳,获得10
11秒前
健康的宛菡完成签到 ,获得积分10
11秒前
zz568完成签到,获得积分10
11秒前
hahahahaha完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402166
求助须知:如何正确求助?哪些是违规求助? 4520720
关于积分的说明 14081778
捐赠科研通 4434524
什么是DOI,文献DOI怎么找? 2434397
邀请新用户注册赠送积分活动 1426632
关于科研通互助平台的介绍 1405383