亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

De NovoDesign of Molecules with Low Hole Reorganization Energy Based on a Quarter-Million Molecule DFT Screen: Part 2

化学空间 计算机科学 强化学习 人工智能 自编码 生成语法 人工神经网络 空格(标点符号) 机器学习 理论计算机科学 算法 化学 生物化学 药物发现 操作系统
作者
Joshua Staker,Kyle Marshall,Karl Leswing,Tim Robertson,Mathew D. Halls,Alexander Goldberg,Tsuguo Morisato,Hiroyuki Maeshima,T. Ando,Hideyuki Arai,Masaru Sasago,Eiji Fujii,Nobuyuki Matsuzawa
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:126 (34): 5837-5852 被引量:11
标识
DOI:10.1021/acs.jpca.2c04221
摘要

Organic semiconductors have many desirable properties including improved manufacturing and flexible mechanical properties. Due to the vastness of chemical space, it is essential to efficiently explore chemical space when designing new materials, including through the use of generative techniques. New generative machine learning methods for molecular design continue to be published in the literature at a significant rate but successfully adapting methods to new chemistry and problem domains remains difficult. These challenges necessitate continual method evaluation to probe method viability for use in alternative applications not covered in the original works. In continuation of our previous work, we evaluate four additional machine-learning-based de novo methods for generating molecules with high predicted hole mobility for use in semiconductor applications. The four generative methods evaluated here are (1) Molecule Deep Q-Networks (MolDQN), which utilizes Deep-Q learning to directly optimize molecular structure graphs for desired properties instead of generating SMILES, (2) Graph-based Genetic Algorithm (GraphGA), which uses a genetic algorithm for optimization where crossovers and mutations are defined in terms of RDKit's reaction SMILES, (3) Generative Tensorial Reinforcement Learning (GENTRL), which is a variational autoencoder (VAE) with a learned prior distribution and optimized using reinforcement learning, and (4) Monte Carlo tree search exploration of chemical space in conjunction with a recurrent neural network (RNN) decoder (ChemTS). The generated molecules were evaluated using density functional theory (DFT) and we discovered better performing molecules with the GraphGA method compared to the other approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_ZG4ml8完成签到 ,获得积分0
10秒前
科研通AI5应助awww采纳,获得10
11秒前
ffff完成签到 ,获得积分10
15秒前
24秒前
awww发布了新的文献求助10
28秒前
40秒前
49秒前
1分钟前
1分钟前
wns发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
violet兰完成签到,获得积分20
1分钟前
wns关闭了wns文献求助
1分钟前
violet兰发布了新的文献求助10
1分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
可爱的函函应助penny采纳,获得10
3分钟前
3分钟前
3分钟前
penny发布了新的文献求助10
3分钟前
白菜完成签到 ,获得积分10
3分钟前
科研通AI5应助penny采纳,获得10
3分钟前
Owen应助欣欣采纳,获得10
4分钟前
5分钟前
欣欣发布了新的文献求助10
5分钟前
Panther完成签到,获得积分10
5分钟前
6分钟前
传奇3应助LYL采纳,获得10
6分钟前
赫枫应助bc采纳,获得400
7分钟前
大英留子千早爱音完成签到,获得积分10
7分钟前
7分钟前
wns发布了新的文献求助10
7分钟前
8分钟前
wns完成签到,获得积分10
8分钟前
残幻应助Wei采纳,获得10
8分钟前
8分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333713
关于积分的说明 10263130
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511