Let IoT Know You Better: User Identification and Emotion Recognition Through Millimeter-Wave Sensing

计算机科学 鉴定(生物学) 特征(语言学) 前提 无线 特征提取 光学(聚焦) 人工智能 情绪识别 人机交互 机器学习 电信 光学 哲学 物理 生物 植物 语言学
作者
Huanpu Yin,Shuhui Yu,Yingshuo Zhang,Anfu Zhou,Xin Wang,Liang Liu,Huadóng Ma,Jianhua Liu,Ning Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1149-1161 被引量:8
标识
DOI:10.1109/jiot.2022.3204779
摘要

Emotion recognition, particularly contactless recognition via wireless sensing, has shown its promise in diverse applications. However, the previous works only focus on emotions rather than the person, i.e., the premise is already knowing who the subject is, without considering the issue of identifying subjects. We envision that user identification and emotion recognition together will bring more adaptive and personalized Internet of Things applications, e.g., a smart home system can react to specific emotions of a specific user, independently. In this work, we move forward to investigate the problem of simultaneous user identification, using only physiological indicators embedded in wireless signals reflected off from targets. Toward the objective, in this article, we first carry out a comprehensive measurement study, which validates the feasibility of simultaneous user identification and emotion recognition. Moreover, the measurement also discovers that the key challenge lies in the limitation of artificial features and the substantial emotion feature deviation across different days, which hinders accurate and robust sensing. To resolve the challenge, we design two multiscale neural networks, incorporated with a custom-built feature attention mechanism, so as to obtain rich feature expression and, thus, enhance the important features for accurate recognition. We prototype mmEMO using a commercial off-the-shelf millimeter-wave radar and experimental evaluation shows that mmEMO can achieve 87.68% user identification accuracy and 80.59% emotion recognition accuracy, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑猫发布了新的文献求助10
刚刚
hhhhh发布了新的文献求助10
1秒前
冷傲博关注了科研通微信公众号
2秒前
勤劳梦凡发布了新的文献求助10
2秒前
Elin完成签到,获得积分10
2秒前
sheep完成签到,获得积分20
2秒前
探寻完成签到,获得积分10
2秒前
3秒前
Reef驳回了冰魂应助
4秒前
及尔完成签到,获得积分10
4秒前
东十八发布了新的文献求助30
4秒前
木湾发布了新的文献求助30
4秒前
金金完成签到,获得积分10
4秒前
要受到80斤完成签到,获得积分10
4秒前
郭子仪发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
兴奋海雪完成签到,获得积分10
6秒前
6秒前
7秒前
跳跃完成签到,获得积分10
7秒前
Qoo发布了新的文献求助30
7秒前
7秒前
腾飞完成签到,获得积分10
8秒前
sheep发布了新的文献求助10
9秒前
领导范儿应助萌兴采纳,获得10
9秒前
9秒前
夕荀发布了新的文献求助10
10秒前
小二郎应助萤火采纳,获得10
10秒前
iNk应助Cassiopiea19采纳,获得20
11秒前
Hello应助Cassiopiea19采纳,获得10
11秒前
刘西西完成签到,获得积分10
11秒前
思源应助Hhhhhhhh采纳,获得100
11秒前
安年发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831979
求助须知:如何正确求助?哪些是违规求助? 3374351
关于积分的说明 10484424
捐赠科研通 3094186
什么是DOI,文献DOI怎么找? 1703366
邀请新用户注册赠送积分活动 819406
科研通“疑难数据库(出版商)”最低求助积分说明 771488