Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma

医学 胰腺导管腺癌 接收机工作特性 逻辑回归 腺癌 淋巴结 转移 无线电技术 比例危险模型 放射科 肿瘤科 胰腺癌 内科学 癌症
作者
Yun Bian,Zhilin Zheng,Xu Fang,Hui Jiang,Mengmeng Zhu,Jieyu Yu,Haiyan Zhao,Ling Zhang,Jiawen Yao,Le Lü,Jianping Lu,Chengwei Shao
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (1): 160-169 被引量:67
标识
DOI:10.1148/radiol.220329
摘要

Background Although deep learning has brought revolutionary changes in health care, reliance on manually selected cross-sectional images and segmentation remain methodological barriers. Purpose To develop and validate an automated preoperative artificial intelligence (AI) algorithm for tumor and lymph node (LN) segmentation with CT imaging for prediction of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and Methods In this retrospective study, patients with surgically resected, pathologically confirmed PDAC underwent multidetector CT from January 2015 to April 2020. Three models were developed, including an AI model, a clinical model, and a radiomics model. CT-determined LN metastasis was diagnosed by radiologists. Multivariable logistic regression analysis was conducted to develop the clinical and radiomics models. The performance of the models was determined on the basis of their discrimination and clinical utility. Kaplan-Meier curves, the log-rank test, or Cox regression were used for survival analysis. Results Overall, 734 patients (mean age, 62 years ± 9 [SD]; 453 men) were evaluated. All patients were split into training (n = 545) and validation (n = 189) sets. Patients who had LN metastasis (LN-positive group) accounted for 340 of 734 (46%) patients. In the training set, the AI model showed the highest performance (area under the receiver operating characteristic curve [AUC], 0.91) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.58, 0.76, and 0.71, respectively. In the validation set, the AI model showed the highest performance (AUC, 0.92) in the prediction of LN metastasis, whereas the radiologists and the clinical and radiomics models had AUCs of 0.65, 0.77, and 0.68, respectively (P < .001). AI model-predicted positive LN metastasis was associated with worse survival (hazard ratio, 1.46; 95% CI: 1.13, 1.89; P = .004). Conclusion An artificial intelligence model outperformed radiologists and clinical and radiomics models for prediction of lymph node metastasis at CT in patients with pancreatic ductal adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Chu and Fishman in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANA完成签到,获得积分10
刚刚
郭京京完成签到 ,获得积分10
刚刚
1秒前
微风完成签到,获得积分10
1秒前
2秒前
3秒前
谢富杰发布了新的文献求助10
4秒前
5秒前
5秒前
贝木泥舟发布了新的文献求助10
5秒前
5秒前
自建完成签到,获得积分10
6秒前
Tumbleweed668发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
9秒前
bosszjw发布了新的文献求助10
9秒前
9秒前
大鱼完成签到 ,获得积分10
10秒前
14秒前
zho发布了新的文献求助10
15秒前
15秒前
z1y1p1完成签到,获得积分10
16秒前
17秒前
南楼小阁主完成签到,获得积分10
17秒前
杨gj发布了新的文献求助10
19秒前
19秒前
23秒前
院子完成签到,获得积分10
24秒前
斯文败类应助杨gj采纳,获得10
24秒前
贝木泥舟关注了科研通微信公众号
27秒前
小屁孩发布了新的文献求助10
28秒前
星辰大海应助谢富杰采纳,获得30
28秒前
活力雁枫完成签到,获得积分10
29秒前
路漫漫其修远兮完成签到 ,获得积分10
30秒前
31秒前
负责的方盒完成签到,获得积分10
32秒前
yusuf完成签到,获得积分10
32秒前
Aaron发布了新的文献求助10
35秒前
bkagyin应助哈哈采纳,获得10
35秒前
bigheadear完成签到,获得积分10
35秒前
Aaron完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275