钙钛矿(结构)
钴
材料科学
阴极
电化学
陶瓷
密度泛函理论
燃料电池
合理设计
氧化物
化学工程
纳米技术
结晶学
物理化学
电极
化学
计算化学
复合材料
冶金
工程类
作者
Zheng Wang,Yuhao Wang,Jian Wang,Yufei Song,Matthew J. Robson,Arim Seong,Meiting Yang,Zhiqi Zhang,Alessio Belotti,Jiapeng Liu,Guntae Kim,Jongwoo Lim,Zongping Shao,Francesco Ciucci
出处
期刊:Nature Catalysis
[Nature Portfolio]
日期:2022-09-01
卷期号:5 (9): 777-787
被引量:147
标识
DOI:10.1038/s41929-022-00829-9
摘要
The biggest obstacle to the commercialization of protonic ceramic fuel cells (PCFCs) is the lack of high-performance, low-cost cathode materials. Currently, the most promising cathode materials are cobalt-based perovskites; however, the unstable phases, poor thermomechanical compatibility with other PCFC components, high cost and unsatisfactory performance limit the viability of these materials. Here we combine ab initio simulations, molecular orbital insights, and A- and B-site co-substitution to develop a cobalt-free perovskite with outstanding performance. A- and B-site substitution in BaFeO3−δ, is found to promote the formation of oxygen vacancies (\({{{\mathrm{V}}}}_{{{\mathrm{O}}}}^{ \bullet \bullet }\)) and hydroxyl ions (\({{{\mathrm{OH}}}}_{{{\mathrm{O}}}}^ \bullet\)) while retaining structural stability. The best computationally identified material, Ba0.875Fe0.875Zr0.125O3−δ, showed exceptional oxygen reduction reaction electrochemical activity with a peak power density of 0.67 W cm−2 at 500 °C. This rational approach provides a strategy for designing high-activity, low-cost and cobalt-free perovskites, marking a significant step towards realizing commercially viable PCFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI