Directed Evolution and Computational Modeling of Galactose Oxidase toward Bulky Benzylic and Alkyl Secondary Alcohols

烷基 化学 生物催化 定向进化 生物信息学 基质(水族馆) 组合化学 立体化学 催化作用 有机化学 生物化学 突变体 反应机理 生物 基因 生态学
作者
Wan Lin Yeo,Dillon W. P. Tay,Jhoann M.T. Miyajima,Shreyas Supekar,Tong Mei Teh,Jin Xu,Yee Ling Tan,Jie Yang See,Hao Fan,Sebastian Maurer‐Stroh,Yee Hwee Lim,Ee Lui Ang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (24): 16088-16096 被引量:3
标识
DOI:10.1021/acscatal.3c03427
摘要

In the field of alcohol oxidation, galactose oxidase (GOase) is one of the most established enzymes capable of this important chemical transformation under benign conditions. However, the applicability of GOase toward more complex molecules such as those frequently found in the pharmaceutical or agrochemical industries remains restricted. Here, by employing a combined approach of directed evolution and computational modeling, we have identified improved GOases with significantly expanded substrate specificity toward both bulky benzylic and alkyl secondary alcohols, showing activity enhancements of up to 2400-fold compared to the reported benchmark M3-5 mutant. Beneficial mutations conveying relaxed substrate enantioselectivity biases (R/S ratios down to 1.05) and higher thermostabilities (up to 1.6-fold improvement in residual activity versus benchmark) have also been identified. We have applied computational tools YASARA, FoldX, SCWRL, and Glide to show reasonable correlation with features related to GOase structure, protein stability, and catalytic activity. The generated enzyme activity models based on MM/GBSA (r = −0.85) and YASARA (r = −0.89) have successfully predicted the activity trend of a family of related substrates based on the 1-phenyl-1-alkyl alcohol scaffold with varying alkyl chain lengths. Together with curated experimental data sets and further optimization of these in silico models, these approaches can serve as gateway to explore desirable enzyme characteristics, establish enzyme substrate scopes, and accelerate biocatalyst development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助zsy采纳,获得10
刚刚
脑洞疼应助六初采纳,获得10
刚刚
2秒前
anqi发布了新的文献求助10
3秒前
3秒前
maerray发布了新的文献求助10
3秒前
科研通AI5应助lx采纳,获得10
5秒前
脑洞疼应助快乐的书雁采纳,获得10
5秒前
星辰大海应助Jr L采纳,获得10
6秒前
完美世界应助xhs采纳,获得10
7秒前
7秒前
又习发布了新的文献求助10
7秒前
8秒前
zxxxx完成签到,获得积分20
8秒前
呆萌的飞槐完成签到,获得积分10
9秒前
NexusExplorer应助YiPeng采纳,获得10
10秒前
11秒前
害羞外套完成签到,获得积分20
11秒前
11秒前
zxxxx发布了新的文献求助10
12秒前
xintai完成签到,获得积分10
13秒前
13秒前
严三笑完成签到,获得积分10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助30
16秒前
16秒前
穆萝完成签到 ,获得积分0
17秒前
Dong_Huan发布了新的文献求助10
18秒前
20秒前
fang发布了新的文献求助30
20秒前
走四方发布了新的文献求助10
22秒前
25秒前
乐乐应助姜姜姜采纳,获得10
25秒前
Dr.Wei完成签到,获得积分10
29秒前
30秒前
Aiven完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241365
求助须知:如何正确求助?哪些是违规求助? 3775024
关于积分的说明 11854787
捐赠科研通 3429936
什么是DOI,文献DOI怎么找? 1882634
邀请新用户注册赠送积分活动 934478
科研通“疑难数据库(出版商)”最低求助积分说明 841041