Prognostic risk models for incident hypertension: A PRISMA systematic review and meta-analysis

荟萃分析 医学 系统回顾 梅德林 生物信息学 内科学 生物 生物化学
作者
Filip Emil Schjerven,Frank Lindseth,Ingelin Steinsland
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0294148-e0294148
标识
DOI:10.1371/journal.pone.0294148
摘要

Objective Our goal was to review the available literature on prognostic risk prediction for incident hypertension, synthesize performance, and provide suggestions for future work on the topic. Methods A systematic search on PUBMED and Web of Science databases was conducted for studies on prognostic risk prediction models for incident hypertension in generally healthy individuals. Study-quality was assessed using the Prediction model Risk of Bias Assessment Tool (PROBAST) checklist. Three-level meta-analyses were used to obtain pooled AUC/C-statistic estimates. Heterogeneity was explored using study and cohort characteristics in meta-regressions. Results From 5090 hits, we found 53 eligible studies, and included 47 in meta-analyses. Only four studies were assessed to have results with low risk of bias. Few models had been externally validated, with only the Framingham risk model validated more than thrice. The pooled AUC/C-statistics were 0.82 (0.77–0.86) for machine learning models and 0.78 (0.76–0.80) for traditional models, with high heterogeneity in both groups (I 2 > 99%). Intra-class correlations within studies were 60% and 90%, respectively. Follow-up time (P = 0.0405) was significant for ML models and age (P = 0.0271) for traditional models in explaining heterogeneity. Validations of the Framingham risk model had high heterogeneity (I 2 > 99%). Conclusion Overall, the quality of included studies was assessed as poor. AUC/C-statistic were mostly acceptable or good, and higher for ML models than traditional models. High heterogeneity implies large variability in the performance of new risk models. Further, large heterogeneity in validations of the Framingham risk model indicate variability in model performance on new populations. To enable researchers to assess hypertension risk models, we encourage adherence to existing guidelines for reporting and developing risk models, specifically reporting appropriate performance measures. Further, we recommend a stronger focus on validation of models by considering reasonable baseline models and performing external validations of existing models. Hence, developed risk models must be made available for external researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵书杰发布了新的文献求助10
刚刚
2秒前
彩色的采蓝完成签到,获得积分10
3秒前
5秒前
Mandy完成签到 ,获得积分10
7秒前
细雨带风吹完成签到,获得积分10
7秒前
8秒前
9秒前
对手发布了新的文献求助10
13秒前
,645615616发布了新的文献求助10
13秒前
希望天下0贩的0应助LT采纳,获得10
15秒前
shenjy发布了新的文献求助10
15秒前
WJY完成签到,获得积分10
16秒前
YYYZZX1完成签到,获得积分10
17秒前
yuan完成签到,获得积分10
19秒前
酷酷纹完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
霸气雨梅完成签到 ,获得积分10
21秒前
YYYZZX1发布了新的文献求助10
22秒前
安冉然发布了新的文献求助10
22秒前
wanci应助acow采纳,获得10
24秒前
花无双完成签到,获得积分0
25秒前
WJY发布了新的文献求助10
25秒前
就这完成签到,获得积分10
27秒前
Aaron完成签到 ,获得积分10
29秒前
雍州小铁匠完成签到 ,获得积分10
29秒前
赵书杰完成签到,获得积分10
30秒前
iiiau完成签到,获得积分10
30秒前
lxbbb完成签到,获得积分10
33秒前
wzq发布了新的文献求助10
34秒前
Orange应助甜美的鸭子采纳,获得10
36秒前
acow完成签到,获得积分10
36秒前
37秒前
来篇nature给来篇nature的求助进行了留言
37秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
天天快乐应助shenjy采纳,获得10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
学前儿童活动设计 500
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Spectral Characteristics of Solar Radiation 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4300442
求助须知:如何正确求助?哪些是违规求助? 3825068
关于积分的说明 11975553
捐赠科研通 3466381
什么是DOI,文献DOI怎么找? 1901272
邀请新用户注册赠送积分活动 949075
科研通“疑难数据库(出版商)”最低求助积分说明 851159