4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications

生物加工 3D打印 立体光刻 材料科学 纳米技术 组织工程 再生医学 脚手架 生物医学工程 3d打印 计算机科学 丙烯酸酯 工程类 复合材料 化学 聚合物 单体 细胞 生物化学
作者
Maria Kalogeropoulou,Pedro J. Díaz‐Payno,Mohammad J. Mirzaali,Gerjo J.V.M. van Osch,Lidy E. Fratila‐Apachitei,Amir A. Zadpoor
出处
期刊:Biofabrication [IOP Publishing]
卷期号:16 (2): 022002-022002 被引量:5
标识
DOI:10.1088/1758-5090/ad1e6f
摘要

Abstract The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and regenerative medicine (TERM). 4D printing is based on 3D printing, featuring the introduction of time as the fourth dimension, in which there is a transition from a 3D printed scaffold to a new, distinct, and stable state, upon the application of one or more stimuli. Here, we present an overview of the current developments of the 4D printing technology for TERM, with a focus on approaches to achieve temporal changes of the shape of the printed constructs that would enable biofabrication of highly complex structures. To this aim, the printing methods, types of stimuli, shape-shifting mechanisms, and cell-incorporation strategies are critically reviewed. Furthermore, the challenges of this very recent biofabrication technology as well as the future research directions are discussed. Our findings show that the most common printing methods so far are stereolithography (SLA) and extrusion bioprinting, followed by fused deposition modelling, while the shape-shifting mechanisms used for TERM applications are shape-memory and differential swelling for 4D printing and 4D bioprinting, respectively. For shape-memory mechanism, there is a high prevalence of synthetic materials, such as polylactic acid (PLA), poly(glycerol dodecanoate) acrylate (PGDA), or polyurethanes. On the other hand, different acrylate combinations of alginate, hyaluronan, or gelatin have been used for differential swelling-based 4D transformations. TERM applications include bone, vascular, and cardiac tissues as the main target of the 4D (bio)printing technology. The field has great potential for further development by considering the combination of multiple stimuli, the use of a wider range of 4D techniques, and the implementation of computational-assisted strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zakai完成签到 ,获得积分10
1秒前
fang完成签到 ,获得积分10
2秒前
ww完成签到,获得积分10
4秒前
5秒前
Tao完成签到,获得积分10
5秒前
6秒前
9秒前
wanyanjin完成签到,获得积分10
9秒前
醒醒发布了新的文献求助10
10秒前
大模型应助CChi0923采纳,获得10
12秒前
12秒前
Tian发布了新的文献求助10
13秒前
落后醉易发布了新的文献求助10
14秒前
李思超发布了新的文献求助240
16秒前
fengxj完成签到 ,获得积分10
17秒前
18秒前
科研通AI2S应助QR采纳,获得10
18秒前
醒醒完成签到,获得积分10
18秒前
19秒前
刘小明关注了科研通微信公众号
19秒前
smile完成签到 ,获得积分10
21秒前
Grayson发布了新的文献求助30
24秒前
24秒前
27秒前
彩色的德地完成签到,获得积分10
27秒前
27秒前
朱莉发布了新的文献求助10
32秒前
Grayson完成签到,获得积分10
35秒前
冷傲迎梦完成签到,获得积分20
36秒前
AI完成签到 ,获得积分10
38秒前
科研通AI2S应助John采纳,获得10
41秒前
阿夸完成签到,获得积分10
41秒前
上官枫完成签到 ,获得积分10
43秒前
48秒前
英俊的铭应助十先生的猫采纳,获得10
50秒前
科研通AI5应助淘宝叮咚采纳,获得30
53秒前
希望天下0贩的0应助月亮采纳,获得10
53秒前
赘婿应助汉堡上的鸽子粪采纳,获得10
53秒前
桐桐应助老宋采纳,获得10
57秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339