清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Realization of qualitative to semi-quantitative trace detection via SERS-ICA based on internal standard method

规范化(社会学) 表面增强拉曼光谱 拉曼光谱 独立成分分析 化学 模式识别(心理学) 均方误差 分析化学(期刊) 生物系统 人工智能 色谱法 拉曼散射 计算机科学 光学 统计 数学 物理 社会学 人类学 生物
作者
Xiaoming Li,Jiaqi Hu,Zhang De,Xiubin Zhang,Zhetao Wang,Yufeng Wang,Qiang Chen,Pei Liang
出处
期刊:Talanta [Elsevier BV]
卷期号:271: 125650-125650 被引量:8
标识
DOI:10.1016/j.talanta.2024.125650
摘要

Surface-enhanced Raman spectroscopy (SERS) can quickly identify molecular fingerprints and has been widely used in the field of rapid detection. However, the non-uniformity inherent in SERS substrate signals, coupled with the finite nature of the detection object, significantly hampers the advancement of SERS. Nowadays, the existing mature immunochromatographic assay (ICA) method is usually combined with SERS technology to address the defects of SERS detection. Nevertheless, the porous structure of the strip will also affect the signal uniformity during detection. Obviously, a method using SERS-ICA is needed to effectively solve signal fluctuations, improve detection accuracy, and has certain versatility. This paper introduces an internal standard method combining deep learning to predict and process Raman data. Based on the signal fluctuation of single-antigen SERS-ICA test strip, the double-antigen SERS-ICA test strip was constructed. The full spectrum Raman data of double-antigen SERS-ICA test strip was normalized by the sum of two characteristic peaks of internal standard molecules, and then processed by deep learning algorithm. The Relative Standard Deviation (RSD) of Raman data of bisphenol A was compared before and after internal standard normalization of double-antigen SERS-ICA test strip. The RSD processed by this method was increased by 3.8 times. After normalization, the prediction accuracy of Root Mean Square Error (RMSE) is improved by 2.66 times, and the prediction accuracy of R-square (R2) is increased from 0.961 to 0.994. The results showed that RMSE and R2 were used to comprehensively predict the collected data of double-antigen SERS-ICA test strip, which could effectively improve the prediction accuracy. The internal standard algorithm can effectively solve the challenges of uneven hot spots and poor signal reproducibility on the test strip to a certain extent, so as to improve the semi-quantitative accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两个榴莲完成签到,获得积分0
1分钟前
Hello应助容若采纳,获得10
1分钟前
千里草完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
隐形曼青应助容若采纳,获得10
2分钟前
斯文败类应助研友_拓跋戾采纳,获得10
2分钟前
2分钟前
bsmark发布了新的文献求助10
2分钟前
3分钟前
爆米花应助bsmark采纳,获得10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
桐桐应助容若采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
加贝完成签到 ,获得积分10
4分钟前
毛毛完成签到,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
ph完成签到 ,获得积分10
5分钟前
隐形曼青应助容若采纳,获得10
5分钟前
5分钟前
bsmark发布了新的文献求助10
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
6分钟前
爆米花应助容若采纳,获得10
6分钟前
ximitona完成签到,获得积分10
6分钟前
ximitona发布了新的文献求助10
6分钟前
7分钟前
shi发布了新的文献求助10
7分钟前
1762120完成签到,获得积分10
7分钟前
vpothello发布了新的文献求助30
7分钟前
李爱国应助容若采纳,获得10
7分钟前
vpothello完成签到,获得积分10
8分钟前
脑洞疼应助容若采纳,获得10
8分钟前
9分钟前
小马甲应助容若采纳,获得10
9分钟前
星辰大海应助欧皇采纳,获得10
9分钟前
量子星尘发布了新的文献求助100
9分钟前
souther完成签到,获得积分0
10分钟前
韦老虎发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889508
求助须知:如何正确求助?哪些是违规求助? 4173518
关于积分的说明 12952156
捐赠科研通 3934961
什么是DOI,文献DOI怎么找? 2159148
邀请新用户注册赠送积分活动 1177466
关于科研通互助平台的介绍 1082396