Subject-independent meta-learning framework towards optimal training of EEG-based classifiers

计算机科学 人工智能 机器学习 二元分类 任务(项目管理) 脑电图 元学习(计算机科学) 班级(哲学) 二进制数 模式识别(心理学) 支持向量机 数学 心理学 算术 管理 精神科 经济
作者
H.W. Ng,Cuntai Guan
出处
期刊:Neural Networks [Elsevier BV]
卷期号:172: 106108-106108 被引量:9
标识
DOI:10.1016/j.neunet.2024.106108
摘要

Advances in deep learning have shown great promise towards the application of performing high-accuracy Electroencephalography (EEG) signal classification in a variety of tasks. However, many EEG-based datasets are often plagued by the issue of high inter-subject signal variability. Robust deep learning models are notoriously difficult to train under such scenarios, often leading to subpar or widely varying performance across subjects under the leave-one-subject-out paradigm. Recently, the model agnostic meta-learning framework was introduced as a way to increase the model's ability to generalize towards new tasks. While the original framework focused on task-based meta-learning, this research aims to show that the meta-learning methodology can be modified towards subject-based signal classification while maintaining the same task objectives and achieve state-of-the-art performance. Namely, we propose the novel implementation of a few/zero-shot subject-independent meta-learning framework towards multi-class inner speech and binary class motor imagery classification. Compared to current subject-adaptive methods which utilize large number of labels from the target, the proposed framework shows its effectiveness in training zero-calibration and few-shot models for subject-independent EEG classification. The proposed few/zero-shot subject-independent meta-learning mechanism performs well on both small and large datasets and achieves robust, generalized performance across subjects. The results obtained shows a significant improvement over the current state-of-the-art, with the binary class motor imagery achieving 88.70% and the accuracy of multi-class inner speech achieving an average of 31.15%. Codes will be made available to public upon publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助cc采纳,获得10
刚刚
百里丹珍发布了新的文献求助10
1秒前
科研通AI2S应助ada采纳,获得30
1秒前
中心湖小海棠完成签到,获得积分10
1秒前
2秒前
yrma发布了新的文献求助10
2秒前
Oak完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
Zhang发布了新的文献求助30
4秒前
15完成签到,获得积分10
4秒前
4秒前
后来应助凝凝小采纳,获得10
5秒前
不懈奋进应助西出钰门采纳,获得30
5秒前
一条小鱼完成签到 ,获得积分10
6秒前
慕青应助优美的背包采纳,获得10
6秒前
year发布了新的文献求助10
6秒前
orixero应助科研雪瑞采纳,获得10
7秒前
momo发布了新的文献求助50
7秒前
凡人完成签到,获得积分10
7秒前
奈布发布了新的文献求助10
8秒前
8秒前
8秒前
传奇3应助guojingjing采纳,获得10
8秒前
科研通AI5应助Luna采纳,获得10
9秒前
在水一方应助wo采纳,获得10
9秒前
帅气的猫发布了新的文献求助10
9秒前
unowhoiam发布了新的文献求助10
10秒前
10秒前
11秒前
nefu biology发布了新的文献求助10
11秒前
yls发布了新的文献求助10
12秒前
stormhero发布了新的文献求助20
13秒前
13秒前
刻刻完成签到,获得积分10
14秒前
黄青青完成签到,获得积分10
14秒前
zho发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300