Universal and Scalable Weakly-Supervised Domain Adaptation

计算机科学 分类器(UML) 域适应 可扩展性 人工智能 模式识别(心理学) 领域(数学分析) 噪音(视频) 降噪 机器学习 数据挖掘 数学 数学分析 数据库 图像(数学)
作者
Xuan Liu,Ying Huang,Hao Wang,Zheng Xiao,Shigeng Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1313-1325 被引量:3
标识
DOI:10.1109/tip.2024.3361691
摘要

Domain adaptation leverages labeled data from a source domain to learn an accurate classifier for an unlabeled target domain. Since the data collected in practical applications usually contain noise, the weakly-supervised domain adaptation algorithm has attracted widespread attention from researchers that tolerates the source domain with label noises or/and features noises. Several weakly-supervised domain adaptation methods have been proposed to mitigate the difficulty of obtaining the high-quality source domains that are highly related to the target domain. However, these methods assume to obtain the accurate noise rate in advance to reduce the negative transfer caused by noises in source domain, which limits the application of these methods in the real world where the noise rate is unknown. Meanwhile, since source data usually comes from multiple domains, the naive application of single-source domain adaptation algorithms may lead to sub-optimal results. We hence propose a universal and scalable weakly-supervised domain adaptation method called PDCAS to ease restraints of such assumptions and make it more general. Specifically, PDCAS includes two stages: progressive distillation and domain alignment. In progressive distillation stage, we iteratively distill out potentially clean samples whose annotated labels are highly consistent with the prediction of model and correct labels for noisy source samples. This process is non-supervision by exploiting intrinsic similarity to measure and extract initial corrected samples. In domain alignment stage, we consider Class-Aligned Sampling which balances the samples for both source and target domains along with the global feature distributions to alleviate the shift of label distributions. Finally, we apply PDCAS in multi-source noisy scenario and propose a novel multi-source weakly-supervised domain adaptation method called MSPDCAS, which shows the scalability of our framework. Extensive experiments on Office-31 and Office-Home datasets demonstrate the effectiveness and robustness of our method compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚱别跳发布了新的文献求助10
刚刚
master发布了新的文献求助10
刚刚
1秒前
现代苠完成签到,获得积分10
1秒前
小立发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
温柔的如完成签到,获得积分20
2秒前
2秒前
2秒前
qwer完成签到,获得积分10
2秒前
cong666完成签到,获得积分10
3秒前
汤大满发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
耶耶发布了新的文献求助10
5秒前
科研通AI6应助小叮当采纳,获得10
5秒前
烂漫明轩完成签到,获得积分10
6秒前
SciGPT应助CarolineOY采纳,获得10
6秒前
咩啊咩吖完成签到 ,获得积分10
6秒前
韩知临完成签到,获得积分20
7秒前
zlgz发布了新的文献求助10
7秒前
7秒前
53发布了新的文献求助10
8秒前
无花果应助qin采纳,获得30
8秒前
qwer发布了新的文献求助10
8秒前
8秒前
8秒前
lzlz199829完成签到,获得积分20
9秒前
车干子完成签到,获得积分10
9秒前
刘老板发布了新的文献求助10
10秒前
怡然雁风完成签到,获得积分10
10秒前
英俊的铭应助Crw__采纳,获得10
11秒前
11秒前
12秒前
x甜豆完成签到,获得积分10
12秒前
12秒前
13秒前
我不理解完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010