Vision-based Monitoring of the Short-term Dynamic Behaviour of Plants for Automated Phenotyping

计算机科学 反演(地质) 航程(航空) 期限(时间) 生物系统 人工智能 算法 工程类 生物 古生物学 物理 构造盆地 量子力学 航空航天工程
作者
Nikolaus Wagner,Grzegorz Cielniak
标识
DOI:10.1109/iccvw60793.2023.00069
摘要

Modern computer vision technology plays an increasingly important role in agriculture. Automated monitoring of plants for example is an essential task in several applications, such as high-throughput phenotyping or plant health monitoring. Under external influences like wind, plants typically exhibit dynamic behaviours which reveal important characteristics of their structure and condition. These behaviours, however, are typically not considered by state-of-the-art automated phenotyping methods which mostly observe static plant properties. In this paper, we propose an automated system for monitoring oscillatory plant movement from video sequences. We employ harmonic inversion for the purpose of efficiently and accurately estimating the eigenfrequency and damping parameters of individual plant parts. The achieved accuracy is compared against values obtained by performing the Discrete Fourier Transform (DFT), which we use as a baseline. We demonstrate the applicability of this approach on different plants and plant parts, like wheat ears, hanging vines, as well as stems and stalks, which exhibit a range of oscillatory motions. By utilising harmonic inversion, we are able to consistently obtain more accurate values for the eigenfrequencies compared to those obtained by DFT. We are furthermore able to directly estimate values for the damping coefficient, achieving a similar accuracy as via DFT-based methods, but without the additional computational effort required for the latter. With the approach presented in this paper, it is possible to obtain estimates of mechanical plant characteristics in an automated manner, enabling novel automated acquisition of novel traits for phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小梁要加油完成签到 ,获得积分10
4秒前
4秒前
komisan完成签到 ,获得积分10
6秒前
11秒前
xiaowentu发布了新的文献求助10
16秒前
18秒前
19秒前
20秒前
22222发布了新的文献求助30
20秒前
Ava应助xmhxpz采纳,获得10
21秒前
22秒前
丰富老鼠完成签到,获得积分10
22秒前
虚幻雁荷发布了新的文献求助10
23秒前
ppxx发布了新的文献求助20
25秒前
都是驳回了英姑应助
25秒前
yuqinghui98发布了新的文献求助10
26秒前
科研通AI5应助bird采纳,获得10
28秒前
Nnn完成签到,获得积分10
29秒前
研友_VZG7GZ应助虚幻雁荷采纳,获得10
34秒前
shadow完成签到,获得积分10
37秒前
张张完成签到,获得积分10
38秒前
弹指一挥间完成签到 ,获得积分10
38秒前
43秒前
44秒前
烟花应助科研通管家采纳,获得10
47秒前
所所应助科研通管家采纳,获得10
47秒前
所所应助科研通管家采纳,获得10
48秒前
48秒前
乐乐应助科研通管家采纳,获得10
48秒前
星辰大海应助科研通管家采纳,获得10
48秒前
49秒前
都是发布了新的文献求助80
50秒前
幽壑之潜蛟完成签到,获得积分0
50秒前
51秒前
Hey发布了新的文献求助10
55秒前
56秒前
1分钟前
万程发布了新的文献求助10
1分钟前
胡巴发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385