MSER: Multimodal speech emotion recognition using cross-attention with deep fusion

计算机科学 稳健性(进化) 语音识别 判别式 人工智能 编码器 特征(语言学) 融合机制 模式识别(心理学) 融合 生物化学 化学 语言学 哲学 脂质双层融合 基因 操作系统
作者
Mustaqeem Khan,Wail Gueaieb,Abdulmotaleb El Saddik,Soonil Kwon
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 122946-122946 被引量:31
标识
DOI:10.1016/j.eswa.2023.122946
摘要

In human-computer interaction (HCI) and especially speech signal processing, emotion recognition is one of the most important and challenging tasks due to multi-modality and limited data availability. Nowadays, an intelligent system is required for real-world applications to efficiently process and understand the speaker's emotional state and to enhance the analytical abilities to assist communication by a human-machine interface (HMI). Designing a reliable and robust Multimodal Speech Emotion Recognition (MSER) to efficiently recognize emotions through multi-modality such as speech and text is necessary. This paper proposes a novel MSER model with a deep feature fusion technique using a multi-headed cross-attention mechanism. The proposed model utilizes audio and text cues to predict the emotion label accordingly. Our proposed model processes the raw speech signal and text by CNN and feeds to corresponding encoders for discriminative and semantic feature extractions. The cross-attention mechanism is applied to both features to enhance the interaction between text and audio cues by crossway to extract the most relevant information for emotion recognition. Finally, combining the region-wise weights from both encoders enables interaction among different layers and paths by the proposed deep feature fusion scheme. The authors evaluate the proposed system using the IEMOCAP and MELD datasets and conduct extensive experiments that obtain state-of-the-art (SOTA) results and show a 4.5% improved recognition rate, respectively. Our model secured a significant improvement over SOTA methods, which shows the robustness and effectiveness of the proposed MSER model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助道尔采纳,获得10
1秒前
2秒前
Snow发布了新的文献求助10
2秒前
2秒前
2秒前
leik完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
科研通AI5应助滚滚采纳,获得10
5秒前
7秒前
腾腾腾发布了新的文献求助10
7秒前
李剑鸿发布了新的文献求助30
8秒前
CodeCraft应助直角圆圈采纳,获得10
8秒前
合适的语芙完成签到,获得积分10
8秒前
脑洞疼应助杪123采纳,获得10
9秒前
称心曼安应助yxy采纳,获得10
9秒前
星月夜发布了新的文献求助10
10秒前
慕青应助LMFP采纳,获得10
10秒前
橘哩咕噜应助枕梦采纳,获得10
10秒前
高帮白袜完成签到,获得积分20
10秒前
10秒前
12秒前
阿卫完成签到,获得积分10
12秒前
高帮白袜发布了新的文献求助10
12秒前
13秒前
16秒前
16秒前
Remote发布了新的文献求助10
16秒前
兴奋书雪完成签到,获得积分10
17秒前
18秒前
leik发布了新的文献求助30
18秒前
可爱的函函应助俎树同采纳,获得10
18秒前
善学以致用应助strickland采纳,获得50
19秒前
杪123完成签到,获得积分20
19秒前
安白发布了新的文献求助10
19秒前
俞秋烟发布了新的文献求助100
20秒前
20秒前
Dr_Zhang完成签到 ,获得积分10
21秒前
SYLH应助烟袋斜了街采纳,获得10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365