Multistage Enhancement Network for Tiny Object Detection in Remote Sensing Images

遥感 目标检测 计算机科学 计算机视觉 人工智能 对象(语法) 图像增强 地质学 模式识别(心理学) 图像(数学)
作者
Tianyang Zhang,Xiangrong Zhang,Xiaoqian Zhu,Guanchun Wang,Xiao Han,Xu Tang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2024.3363614
摘要

With the rapid advances in deep learning techniques, remote sensing object detection has achieved remarkable achievements in recent years. However, tiny object detection remains unsatisfactory and suffers from two main drawbacks, including (1) the high sensitivity of IoU for location deviation in tiny objects and (2) the poor-quality feature representations of tiny objects. To address the aforementioned problems, we propose a Multi-stage Enhancement Network (MENet) that achieves the instance-level and feature-level enhancement of tiny objects from different stages of the detector. Since the IoU-based label assignment drastically deteriorates the positive samples for tiny objects, we first propose a Central Region-based (CR) label assignment to substitute it in the Region Proposal Network (RPN). The CR label assignment regards the anchors that fall into the central region of ground-truth boxes as positive samples, which provides more positive samples for tiny objects. Then, we design a Gated Context Aggregation (GCA) module that selectively aggregates valuable context information to enhance the feature representation of tiny objects. Additionally, we devise a positive RoI feature (pRoI) generator in the Region Convolutional Neural Network (R-CNN) to generate a rich diversity of high-quality positive RoI features for tiny objects. We conduct extensive experiments on AI-TOD and SODA-A datasets, and the results demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
GOODYUE发布了新的文献求助10
1秒前
w1完成签到,获得积分10
2秒前
云墨完成签到 ,获得积分10
2秒前
linda完成签到,获得积分10
2秒前
qq完成签到,获得积分10
3秒前
米恩应助Komorebi采纳,获得10
3秒前
yue957发布了新的文献求助10
3秒前
Ava应助jiaoyq617采纳,获得10
4秒前
4秒前
4秒前
儒雅如松完成签到,获得积分10
4秒前
wzl完成签到 ,获得积分10
5秒前
大模型应助跳跃的问玉采纳,获得10
5秒前
6秒前
少艾完成签到 ,获得积分10
6秒前
小二郎应助嘀嘀嘀采纳,获得10
6秒前
龘龘完成签到,获得积分10
6秒前
6秒前
打打应助迅速谷槐采纳,获得10
6秒前
7秒前
ZHH完成签到,获得积分10
7秒前
科研通AI5应助静静采纳,获得10
7秒前
7秒前
李健的小迷弟应助陈柯宇采纳,获得20
7秒前
一蓑烟雨完成签到,获得积分10
8秒前
xx发布了新的文献求助10
8秒前
GOODYUE完成签到,获得积分20
8秒前
彭于彦祖应助yebo采纳,获得20
8秒前
汉堡包应助pig120采纳,获得10
9秒前
大模型应助靓丽雨梅采纳,获得10
9秒前
10秒前
真的困发布了新的文献求助10
10秒前
Ava应助王hf采纳,获得10
11秒前
西门追命发布了新的文献求助10
12秒前
嘀嘀嘀完成签到,获得积分10
12秒前
天马行空完成签到,获得积分10
13秒前
wzl关注了科研通微信公众号
14秒前
maomao完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226