用于能源转化和环境修复的TiO2 基梯型异质结光催 化剂

材料科学
作者
B.P. Zhang,Bin Sun,Fangxiao Liu,Tingting Gao,Guowei Zhou
出处
期刊:Science China. Materials [Springer Nature]
被引量:2
标识
DOI:10.1007/s40843-023-2754-8
摘要

Solar-driven semiconductor photocatalysis technology is deemed to be a potential strategy to alleviate environmental crisis and energy shortage. Thus, the exploration of high-efficiency photocatalysts is the key to promoting the development and practical application of photocatalysis technology. As a typical photocatalyst, TiO2 has gained extensive attention because of its superb stability, environmental-friendliness, and low price. However, the rapid photo-induced carrier recombination, inadequate light absorption, and insufficient reduction capacity are still the major drawbacks that significantly hamper its photocatalytic performance. Fortunately, the above shortcomings can concurrently overcome by constructing TiO2-based step-scheme (S-scheme) heterojunction photocatalysts with other semiconductors, during which the respective advantages can not only achieve significant spatial carrier separation and robust light-harvesting ability but also preserve the strong redox capacities. Herein, this review presents the latest development in improving the photocatalytic performance of TiO2via the S-scheme heterojunction. Specifically, the classification of TiO2-based S-scheme heterojunction photocatalysts has been detailly described, mainly including metal oxides, metal chalcogenides, organic semiconductors, and other semiconductors. Then, we summarize the current research progress of TiO2-based S-scheme heterojunction photocatalysts in photocatalytic H2 evolution, CO2 reduction, H2O2 production, and pollutant degradation. Simultaneously, various characterization strategies for understanding the photo-induced carrier transfer pathway are also reviewed. Finally, we propose several drawbacks and future prospects in the development of TiO2-based S-scheme heterojunction photocatalysts. It presents an insight into constructing high-efficiency TiO2-based S-scheme heterojunction photocatalysts for energy conversion and environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wonder应助Cker采纳,获得20
1秒前
2秒前
明亮无颜完成签到,获得积分10
2秒前
zzfcrazy发布了新的文献求助10
2秒前
NexusExplorer应助PlanetaryLayer采纳,获得10
3秒前
任性的白薇完成签到,获得积分10
3秒前
伟伟发布了新的文献求助10
3秒前
撑撑的烤红薯完成签到 ,获得积分10
3秒前
今后应助时尚凡雁采纳,获得10
4秒前
5秒前
子子发布了新的文献求助10
5秒前
香蕉觅云应助owldan采纳,获得10
5秒前
5秒前
明亮无颜发布了新的文献求助30
5秒前
方法v反对发布了新的文献求助10
6秒前
工兵小蚂蚁完成签到,获得积分10
6秒前
Hello应助缓慢千易采纳,获得10
7秒前
SI完成签到,获得积分10
7秒前
7秒前
浅藏完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助直角圆圈采纳,获得10
9秒前
Ava应助银角大王采纳,获得30
9秒前
10秒前
DNA甲基转移酶完成签到,获得积分10
10秒前
Cker完成签到,获得积分10
11秒前
gc发布了新的文献求助10
11秒前
11秒前
zc北完成签到,获得积分10
11秒前
12秒前
冷艳从霜发布了新的文献求助20
13秒前
秋骊完成签到,获得积分10
14秒前
李爱国应助大大怪z采纳,获得10
14秒前
邬乾发布了新的文献求助30
16秒前
玛卡巴卡发布了新的文献求助10
16秒前
cy4psych0完成签到,获得积分20
17秒前
faiting发布了新的文献求助10
17秒前
子子完成签到,获得积分10
19秒前
秋雪瑶应助光亮妙之采纳,获得10
19秒前
高分求助中
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
有机硅树脂及其应用 400
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2425884
求助须知:如何正确求助?哪些是违规求助? 2112777
关于积分的说明 5352599
捐赠科研通 1840677
什么是DOI,文献DOI怎么找? 916077
版权声明 561363
科研通“疑难数据库(出版商)”最低求助积分说明 489945