TiO2-based S-scheme photocatalysts for solar energy conversion and environmental remediation

材料科学 异质结 光催化 半导体 环境修复 纳米技术 计算机科学 太阳能 光伏系统 光电子学 工程类 电气工程 化学 催化作用 污染 生物 生物化学 生态学
作者
Baolong Zhang,Bin Sun,Fangxuan Liu,Tingting Gao,Guowei Zhou
出处
期刊:Science China. Materials [Springer Science+Business Media]
卷期号:67 (2): 424-443 被引量:58
标识
DOI:10.1007/s40843-023-2754-8
摘要

Solar-driven semiconductor photocatalysis technology is deemed to be a potential strategy to alleviate environmental crisis and energy shortage. Thus, the exploration of high-efficiency photocatalysts is the key to promoting the development and practical application of photocatalysis technology. As a typical photocatalyst, TiO2 has gained extensive attention because of its superb stability, environmental-friendliness, and low price. However, the rapid photo-induced carrier recombination, inadequate light absorption, and insufficient reduction capacity are still the major drawbacks that significantly hamper its photocatalytic performance. Fortunately, the above shortcomings can concurrently overcome by constructing TiO2-based step-scheme (S-scheme) heterojunction photocatalysts with other semiconductors, during which the respective advantages can not only achieve significant spatial carrier separation and robust light-harvesting ability but also preserve the strong redox capacities. Herein, this review presents the latest development in improving the photocatalytic performance of TiO2via the S-scheme heterojunction. Specifically, the classification of TiO2-based S-scheme heterojunction photocatalysts has been detailly described, mainly including metal oxides, metal chalcogenides, organic semiconductors, and other semiconductors. Then, we summarize the current research progress of TiO2-based S-scheme heterojunction photocatalysts in photocatalytic H2 evolution, CO2 reduction, H2O2 production, and pollutant degradation. Simultaneously, various characterization strategies for understanding the photo-induced carrier transfer pathway are also reviewed. Finally, we propose several drawbacks and future prospects in the development of TiO2-based S-scheme heterojunction photocatalysts. It presents an insight into constructing high-efficiency TiO2-based S-scheme heterojunction photocatalysts for energy conversion and environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
嘒彼小星完成签到 ,获得积分10
2秒前
曾经如冬完成签到,获得积分10
3秒前
哈哈发布了新的文献求助10
4秒前
王致远发布了新的文献求助10
4秒前
wonder123应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
AAAAA应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
一一应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
zhanghuiqian完成签到,获得积分10
6秒前
张晓宇发布了新的文献求助30
7秒前
8秒前
小周发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助兴奋的万声采纳,获得10
11秒前
大模型应助moonman采纳,获得10
12秒前
12秒前
乐乐应助南风采纳,获得30
13秒前
Elvira完成签到,获得积分10
14秒前
16秒前
传奇3应助萌萌采纳,获得10
16秒前
17秒前
zp发布了新的文献求助10
17秒前
坦率的香烟完成签到,获得积分10
18秒前
gx完成签到 ,获得积分20
19秒前
20秒前
乐乐乐乐乐乐应助谨慎采纳,获得10
20秒前
XU发布了新的文献求助10
20秒前
情怀应助关包子采纳,获得10
21秒前
完美的水杯完成签到 ,获得积分10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382