Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy

背景(考古学) 计算机科学 特征(语言学) 直方图 一致性(知识库) 放射治疗 梁(结构) 外照射放疗 人工智能 数学 光学 物理 医学 图像(数学) 放射科 哲学 古生物学 生物 近距离放射治疗 语言学
作者
Lin Teng,bin Wang,Xuanang Xu,Jiadong Zhang,Lanzhuju Mei,Qianjin Feng,Dinggang Shen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:92: 103045-103045 被引量:4
标识
DOI:10.1016/j.media.2023.103045
摘要

Automatic and accurate dose distribution prediction plays an important role in radiotherapy plan. Although previous methods can provide promising performance, most methods did not consider beam-shaped radiation of treatment delivery in clinical practice. This leads to inaccurate prediction, especially on beam paths. To solve this problem, we propose a beam-wise dose composition learning (BDCL) method for dose prediction in the context of head and neck (H&N) radiotherapy plan. Specifically, a global dose network is first utilized to predict coarse dose values in the whole-image space. Then, we propose to generate individual beam masks to decompose the coarse dose distribution into multiple field doses, called beam voters, which are further refined by a subsequent beam dose network and reassembled to form the final dose distribution. In particular, we design an overlap consistency module to keep the similarity of high-level features in overlapping regions between different beam voters. To make the predicted dose distribution more consistent with the real radiotherapy plan, we also propose a dose-volume histogram (DVH) calibration process to facilitate feature learning in some clinically concerned regions. We further apply an edge enhancement procedure to enhance the learning of the extracted feature from the dose falloff regions. Experimental results on a public H&N cancer dataset from the AAPM OpenKBP challenge show that our method achieves superior performance over other state-of-the-art approaches by significant margins. Source code is released at https://github.com/TL9792/BDCLDosePrediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
123完成签到,获得积分10
2秒前
3秒前
3秒前
百灵完成签到,获得积分10
4秒前
517843291关注了科研通微信公众号
6秒前
Victor完成签到,获得积分10
6秒前
glaze完成签到 ,获得积分10
7秒前
霖爪飞扬发布了新的文献求助10
8秒前
宁异勿同发布了新的文献求助10
8秒前
10秒前
nilu完成签到,获得积分10
10秒前
狂吃五碗饭完成签到,获得积分10
12秒前
酷波er应助德芙纵向丝滑采纳,获得10
12秒前
无私的含海完成签到,获得积分10
13秒前
记不清发布了新的文献求助10
14秒前
蓝色发布了新的文献求助10
15秒前
15秒前
爆米花应助xiaoyue采纳,获得10
17秒前
20秒前
MX应助huyang采纳,获得10
20秒前
滴滴滴发布了新的文献求助10
21秒前
德芙纵向丝滑完成签到,获得积分20
23秒前
Zz完成签到,获得积分10
23秒前
MAD666发布了新的文献求助30
25秒前
26秒前
完美世界应助江峰采纳,获得10
26秒前
宁异勿同完成签到,获得积分10
27秒前
27秒前
28秒前
斯文的难破完成签到 ,获得积分10
30秒前
Hz发布了新的文献求助10
31秒前
31秒前
32秒前
蓝色发布了新的文献求助10
33秒前
35秒前
尊敬的凝丹完成签到 ,获得积分10
36秒前
liuhongcan完成签到,获得积分10
36秒前
zhang发布了新的文献求助10
37秒前
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445