A Two-Condition Continuous Asymmetric Car-Following Model for Adaptive Cruise Control Vehicles

巡航控制 加速度 计算机科学 弹道 控制理论(社会学) 微观交通流模型 流量(计算机网络) 巡航 稳健性 模拟 车辆动力学 汽车工程 控制(管理) 工程类 人工智能 实时计算 交通生成模型 航空航天工程 物理 计算机安全 天文 程序设计语言 经典力学
作者
Mingfeng Shang,Shian Wang,Raphael Stern
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3975-3985 被引量:5
标识
DOI:10.1109/tiv.2024.3349517
摘要

Adaptive cruise control (ACC) vehicles have the potential to impact traffic flow dynamics. To better understand the impacts of ACC vehicles on traffic flow, an accurate microscopic car-following model for ACC vehicles is essential. Most of the ACC car-following models utilize a continuous function to describe vehicle acceleration and braking, e.g., the optimal velocity relative velocity (OVRV) model. However, these models do not necessarily describe car-following behavior with sufficient accuracy. Recent studies have proposed switching models to better describe realistic ACC dynamics. However, they often fail to accurately capture the driving behavior around the switching points, where a vehicle switches between acceleration and deceleration. In this study, we develop a two-condition, continuous asymmetric car-following (TCACF) model to capture ACC driving behavior in a physically interpretable manner, while preserving numerical soundness. The proposed TCACF model and multiple other car-following models are calibrated based on a real-world ACC trajectory dataset. The results show that the TCACF model better describes the asymmetric driving behavior of ACC vehicles than any of the commonly used car-following models, especially at switching points. The results indicate that the TCACF model considerably increases model accuracy by up to 32.46% when compared with other switching models and by up to 36.98% when compared to commonly used car-following models. The TCACF model is expected to offer new insights into modeling and simulating emerging ACC car-following dynamics with a higher degree of accuracy and can be used in applications where correctly simulating acceleration behavior is important.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助醒醒采纳,获得10
1秒前
无奈的萍发布了新的文献求助10
4秒前
岁月轮回发布了新的文献求助10
6秒前
乐正亦寒完成签到 ,获得积分10
7秒前
田様应助fffff采纳,获得10
7秒前
JamesPei应助追光采纳,获得10
7秒前
Bin_Liu发布了新的文献求助10
9秒前
菠萝谷波完成签到,获得积分10
13秒前
深情安青应助岁月轮回采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
吴大打应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
米田共完成签到,获得积分10
16秒前
玲儿完成签到,获得积分10
17秒前
17秒前
Ava应助19854173750采纳,获得10
18秒前
19秒前
和谐冰菱完成签到,获得积分10
20秒前
20秒前
Oracle应助GeoEye采纳,获得30
22秒前
和谐冰菱发布了新的文献求助10
22秒前
刘辰完成签到 ,获得积分10
23秒前
阿rain完成签到,获得积分10
24秒前
fffan发布了新的文献求助10
25秒前
26秒前
鱼吧啦拉巴巴完成签到,获得积分20
26秒前
27秒前
27秒前
27秒前
粉红大叔发布了新的文献求助10
31秒前
caohuijun发布了新的文献求助10
31秒前
32秒前
19854173750发布了新的文献求助10
32秒前
吴大打完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780028
求助须知:如何正确求助?哪些是违规求助? 3325388
关于积分的说明 10222846
捐赠科研通 3040559
什么是DOI,文献DOI怎么找? 1668897
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612