A CLT for the LSS of large-dimensional sample covariance matrices with diverging spikes

数学 特征向量 协方差 中心极限定理 统计 协方差矩阵 检验统计量 人口 应用数学 样本量测定 统计假设检验 物理 人口学 量子力学 社会学
作者
Zhijun Liu,Jiang Hu,Zhidong Bai,Haiyan Song
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:51 (5) 被引量:4
标识
DOI:10.1214/23-aos2333
摘要

In this paper, we establish the central limit theorem (CLT) for linear spectral statistics (LSSs) of a large-dimensional sample covariance matrix when the population covariance matrices are involved with diverging spikes. This constitutes a nontrivial extension of the Bai–Silverstein theorem (BST) (Ann. Probab. 32 (2004) 553–605), a theorem that has strongly influenced the development of high-dimensional statistics, especially in the applications of random matrix theory to statistics. Recently, there has been a growing realization that the assumption of uniform boundedness of the population covariance matrices in the BST is not satisfied in some fields, such as economics, where the variances of principal components may diverge as the dimension tends to infinity. Therefore, in this paper, we aim to eliminate this obstacle to applications of the BST. Our new CLT accommodates spiked eigenvalues, which may either be bounded or tend to infinity. A distinguishing feature of our result is that the variance in the new CLT is related to both spiked eigenvalues and bulk eigenvalues, with dominance being determined by the divergence rate of the largest spiked eigenvalues. The new CLT for LSS is then applied to test the hypothesis that the population covariance matrix is the identity matrix or a generalized spiked model. The asymptotic distributions of the corrected likelihood ratio test statistic and the corrected Nagao's trace test statistic are derived under the alternative hypothesis. Moreover, we present power comparisons between these two LSSs and Roy's largest root test. In particular, we demonstrate that except for the case in which there is only one spike, the LSSs could exhibit higher asymptotic power than Roy's largest root test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白石完成签到,获得积分10
1秒前
天白完成签到,获得积分10
1秒前
1秒前
汉堡包应助芷莯采纳,获得10
1秒前
AAAAA发布了新的文献求助10
1秒前
1秒前
稳重的青旋完成签到,获得积分10
1秒前
Afei完成签到,获得积分10
2秒前
2秒前
苏苏苏发布了新的文献求助10
2秒前
LAN完成签到,获得积分20
3秒前
3秒前
迪迪完成签到 ,获得积分10
3秒前
3秒前
小蘑菇应助Billy采纳,获得10
3秒前
知识学爆完成签到,获得积分10
3秒前
彭于晏应助xiaoshuwang采纳,获得10
4秒前
Micahaeler发布了新的文献求助10
5秒前
二九十二完成签到,获得积分10
5秒前
阔达语儿完成签到,获得积分10
5秒前
wang完成签到,获得积分20
6秒前
wanci应助曲秋白采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
wang发布了新的文献求助10
8秒前
Afei发布了新的文献求助10
8秒前
8秒前
荼蘼如雪发布了新的文献求助10
8秒前
bobinson关注了科研通微信公众号
9秒前
所所应助专一的白萱采纳,获得10
9秒前
芷莯发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
cqssdyxn发布了新的文献求助10
12秒前
Isabella完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238729
求助须知:如何正确求助?哪些是违规求助? 3772569
关于积分的说明 11847565
捐赠科研通 3428517
什么是DOI,文献DOI怎么找? 1881507
邀请新用户注册赠送积分活动 933750
科研通“疑难数据库(出版商)”最低求助积分说明 840575