Deep Reinforcement Learning Based Integrated Eco-driving Strategy for Connected and Automated Electric Vehicles in Complex Urban Scenarios

强化学习 计算机科学 工程类 汽车工程 控制工程 人工智能
作者
J. Fan,Xiaodong Wu,Jie Li,Min Xu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (4): 4621-4635 被引量:4
标识
DOI:10.1109/tvt.2024.3358299
摘要

With vehicle-to-everything (V2X) information, connected and automated vehicle (CAV) eco-driving strategy allows the vehicle to plan its speed and choose the optimal lane based on actual conditions, resulting in improved driving performance. This study presents a novel eco-driving strategy framework based on deep reinforcement learning (DRL) techniques for CAVs driving in urban scenarios. This framework integrates longitudinal speed planning with lateral lane change decision-making and aims to co-optimize the energy efficiency, driving safety, and travel efficiency. By leveraging traffic information and multi-objective reward functions, the twin delayed deep deterministic (TD3) algorithm is employed to train the actor-critic (AC) network which generates both longitudinal and lateral control commands based on its estimation for lane preference score. The proposed strategy is tested in a complex urban scenario based on Simulation Urban Mobility (SUMO) which reflects real urban traffic conditions. Experimental results indicate that the longitudinal speed planning module of the proposed strategy can shorten the travel time by up to 7.94% or reduce the electricity consumption by 18.15%, depending on the degree of importance placed on economy by the TD3 agent. By integrating the lateral lane decision module, the proposed strategy can further shorten the travel time by 5.7% and save 1.75% energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刺猬完成签到,获得积分10
刚刚
庄海棠完成签到 ,获得积分10
5秒前
violetlishu完成签到 ,获得积分10
7秒前
小許要看文献完成签到,获得积分10
9秒前
小豆芽博士完成签到,获得积分10
11秒前
14秒前
科研通AI5应助djbj2022采纳,获得80
22秒前
lilylwy完成签到 ,获得积分0
22秒前
23秒前
笨笨忘幽完成签到,获得积分10
24秒前
感性的神级完成签到,获得积分10
24秒前
24秒前
songzj发布了新的文献求助10
24秒前
27秒前
陈默完成签到 ,获得积分10
27秒前
激昂的南烟完成签到 ,获得积分10
30秒前
30秒前
summer完成签到,获得积分10
30秒前
djbj2022发布了新的文献求助80
35秒前
zeannezg完成签到 ,获得积分10
43秒前
xz完成签到 ,获得积分10
43秒前
崩溃完成签到,获得积分10
44秒前
bono完成签到 ,获得积分10
50秒前
蛋卷完成签到 ,获得积分10
58秒前
59秒前
songzj发布了新的文献求助30
59秒前
阿童木完成签到,获得积分20
59秒前
1分钟前
maun222发布了新的文献求助30
1分钟前
CNAxiaozhu7完成签到,获得积分10
1分钟前
maun222完成签到,获得积分10
1分钟前
绵绵球完成签到 ,获得积分0
1分钟前
李健的小迷弟应助tuyfytjt采纳,获得10
1分钟前
乘风完成签到,获得积分10
1分钟前
1分钟前
Tong完成签到,获得积分0
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
tuyfytjt发布了新的文献求助10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511