Uncovering Key Factors in Graphene Aerogel-Based Electrocatalysts for Sustainable Hydrogen Production: An Unsupervised Machine Learning Approach

塔菲尔方程 过电位 主成分分析 石墨烯 材料科学 化学 电化学 计算机科学 纳米技术 人工智能 电极 物理化学
作者
Emil Obeid,Khaled Younes
出处
期刊:Gels [MDPI AG]
卷期号:10 (1): 57-57 被引量:8
标识
DOI:10.3390/gels10010057
摘要

The application of principal component analysis (PCA) as an unsupervised learning method has been used in uncovering correlations among diverse features of aerogel-based electrocatalysts. This analytical approach facilitates a comprehensive exploration of catalytic activity, revealing intricate relationships with various physical and electrochemical properties. The first two principal components (PCs), collectively capturing nearly 70% of the total variance, attested the reliability and efficacy of PCA in unveiling meaningful patterns. This study challenges the conventional understanding that a material’s reactivity is solely dictated by the quantity of catalyst loaded. Instead, it unveils a complex perspective, highlighting that reactivity is intricately influenced by the material’s overall design and structure. The PCA bi-plot uncovers correlations between pH and Tafel slope, suggesting an interdependence between these variables and providing valuable insights into the complex interactions among physical and electrochemical properties. Tafel slope stands to be positively correlated with PC1 and PC2, showing an evident positive correlation with the pH. These findings showed that the pH can have a positive correlation with the Tafel slope, however, it does not necessarily reflect a direct positive correlation with the overpotential. The impact of pH on current density (j)and Tafel slope underscores the importance of adjusting pH to lower overpotential effectively, enhancing catalytic activity. Surface area (from 30 to 533 m2 g−1) emerges as a key physical property, inclusively inverse correlation with overpotential, indicating its direct role in lowering overpotential and increasing catalytic activity. The introduction of PC3, in conjunction with PC1, enriches the analysis by revealing consistent trends despite a slightly lower variance (60%). This reinforces the robustness of PCA in delineating distinct characteristics of graphene aerogels, affirming their potential implications in diverse electrocatalytic applications. In summary, PCA proves to be a valuable tool for unraveling complex relationships within aerogel-based electrocatalysts, extending insights beyond catalytic sites to emphasize the broader spectrum of material properties. This approach enhances comprehension of dataset intricacies and holds promise for guiding the development of more effective and versatile electrocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吴家鑫发布了新的文献求助10
2秒前
静子完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Bressanone发布了新的文献求助10
5秒前
12123浪发布了新的文献求助30
5秒前
微笑猫咪发布了新的文献求助10
5秒前
彭于晏应助根系内生菌采纳,获得10
6秒前
6秒前
6秒前
耐斯糖完成签到 ,获得积分10
7秒前
lqy发布了新的文献求助10
7秒前
阿梨完成签到 ,获得积分10
7秒前
7秒前
努努发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
9秒前
清脆的葵阴完成签到 ,获得积分10
9秒前
10秒前
赵赵发布了新的文献求助10
10秒前
胖川完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得20
11秒前
Hello应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
烤冷面应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
满意硬币应助科研通管家采纳,获得30
12秒前
打打应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
全幼儿园最戏精完成签到 ,获得积分10
12秒前
12秒前
材料诚发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312