Double-attention mechanism-based segmentation grasping detection network

计算机科学 人工智能 分割 图像分割 计算机视觉 机制(生物学) 模式识别(心理学) 哲学 认识论
作者
Qinghua Li,Xuyang Wang,Kun Zhang,Yiran Yang,Chao Feng
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (02)
标识
DOI:10.1117/1.jei.33.2.023012
摘要

In practical scenarios, detecting and grasping objects accurately can be very challenging due to the uncertainty of their positions and orientations, as well as environmental interference. Especially when the target object is occluded by other objects, traditional machine vision methods have difficulty in accurately recognizing it. To address this problem, we propose the double-attention mechanism-based segmentation grasping detection network (DAM-SGNET). DAM-SGNET is a technique used for detecting and grasping objects accurately in cluttered environments. It utilizes a deep neural network that incorporates two attention mechanisms to predict the optimal grasping posture for RGB images at the pixel level without relying on depth images. The method begins by reannotating datasets, such as the Cornell dataset, cluttered scenes objects dataset, and VMRD dataset, with a new labeling method proposed by previous researchers. These datasets are then used to train an occlusion detection model. DAM-SGNET uses a residual network (SERESNET) with channel attention mechanisms to extract features from the images, and an adaptive decoder including a feature pyramid deformation network and an efficient channel attention module to enhance robustness in cluttered, unstructured open environments. DAM-SGNET ultimately achieves grasp detection accuracy of 99.43%, 99.24%, and 85.38% for the official Cornell grasp dataset, the cluttered scenes grasping dataset, and the VMRD grasping dataset, respectively. Real-world experiments demonstrate the efficacy of DAM-SGNET in self-built robotic arm platforms, achieving a single-target grasping success rate of 99.6%, and an average grasping success rate of 96.46% for cluttered stacked objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献狂人发布了新的文献求助10
刚刚
NexusExplorer应助肖沐采纳,获得10
1秒前
紧张的含羞草完成签到,获得积分10
1秒前
lanxinge发布了新的文献求助10
1秒前
2秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
卡卡西应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
时冬冬应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得20
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
时冬冬应助科研通管家采纳,获得20
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
二枫忆桑完成签到,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
科研路一直绿灯完成签到,获得积分10
5秒前
科研通AI5应助1111采纳,获得10
5秒前
luiii完成签到,获得积分10
6秒前
CBP完成签到,获得积分10
6秒前
minhhuy发布了新的文献求助10
6秒前
zhouyu发布了新的文献求助10
7秒前
7秒前
7秒前
Lucas应助迅速念云采纳,获得10
7秒前
深情安青应助LYB吕采纳,获得10
7秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910