Multi-level textual-visual alignment and fusion network for multimodal aspect-based sentiment analysis

计算机科学 模式 情绪分析 水准点(测量) 人工智能 可视化 自然语言处理 过程(计算) 操作系统 地理 社会学 大地测量学 社会科学
作者
You Li,Han Ding,Yuming Lin,Xinyu Feng,Liang Chang
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (4) 被引量:7
标识
DOI:10.1007/s10462-023-10685-z
摘要

Abstract Multimodal Aspect-Based Sentiment Analysis (MABSA) is an essential task in sentiment analysis that has garnered considerable attention in recent years. Typical approaches in MABSA often utilize cross-modal Transformers to capture interactions between textual and visual modalities. However, bridging the semantic gap between modalities spaces and addressing interference from irrelevant visual objects at different scales remains challenging. To tackle these limitations, we present the Multi-level Textual-Visual Alignment and Fusion Network (MTVAF) in this work, which incorporates three auxiliary tasks. Specifically, MTVAF first transforms multi-level image information into image descriptions, facial descriptions, and optical characters. These are then concatenated with the textual input to form a textual+visual input, facilitating comprehensive alignment between visual and textual modalities. Next, both inputs are fed into an integrated text model that incorporates relevant visual representations. Dynamic attention mechanisms are employed to generate visual prompts to control cross-modal fusion. Finally, we align the probability distributions of the textual input space and the textual+visual input space, effectively reducing noise introduced during the alignment process. Experimental results on two MABSA benchmark datasets demonstrate the effectiveness of the proposed MTVAF, showcasing its superior performance compared to state-of-the-art approaches. Our codes are available at https://github.com/MKMaS-GUET/MTVAF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zzh完成签到 ,获得积分10
3秒前
3秒前
3秒前
叫我读书仔完成签到 ,获得积分10
5秒前
LiYuan发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
9秒前
9秒前
皮皮完成签到 ,获得积分10
13秒前
14秒前
chuanzhi完成签到,获得积分10
14秒前
郭宇发布了新的文献求助10
14秒前
做科研的小丸子完成签到,获得积分10
14秒前
17秒前
17秒前
18秒前
祝笑柳完成签到,获得积分10
21秒前
小蘑菇应助瘦瘦友儿采纳,获得10
22秒前
蜡笔小新完成签到 ,获得积分10
23秒前
23秒前
科研通AI5应助哔哔鱼采纳,获得10
23秒前
24秒前
LiYuan完成签到,获得积分10
25秒前
26秒前
JamesPei应助热情的阿猫桑采纳,获得10
28秒前
木穹完成签到,获得积分10
28秒前
枫也发布了新的文献求助10
29秒前
29秒前
Tian完成签到 ,获得积分10
30秒前
伯约发布了新的文献求助20
31秒前
冇_完成签到 ,获得积分10
31秒前
31秒前
淡淡从阳完成签到,获得积分10
35秒前
云泥发布了新的文献求助10
36秒前
滕皓轩发布了新的文献求助30
36秒前
37秒前
38秒前
昔年完成签到 ,获得积分10
39秒前
NexusExplorer应助伯约采纳,获得10
41秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959