贝叶斯优化
多目标优化
数学优化
集合(抽象数据类型)
计算机科学
帕累托原理
机器学习
人工智能
数学
程序设计语言
出处
期刊:Applied Energy
[Elsevier BV]
日期:2023-01-05
卷期号:333: 120575-120575
被引量:108
标识
DOI:10.1016/j.apenergy.2022.120575
摘要
Supported by the combination of the advanced BIM technique with intelligent algorithms, this paper develops a systematic framework using explainable machine learning and multi-objective optimization to realize the automatic prediction and optimization of building energy performance towards the sustainable development goal. There are three critical parts incorporated, including the DesignBuilder simulation, BO-LGBM (Bayesian optimization-LightGBM) and an explainable method SHAP (SHapley Additive explanation)-based prediction and explanation of building energy performance, and AGE-MOEA algorithm-based multi-objective optimization (MOO) under sources of uncertainty. It has been verified in a case study for green building design. Results show that: (1) The predictive BO-LGBM model can make a highly precise prediction in agreement with the simulation data, reaching up the R2 larger than 93.4% and MAPE smaller than 2.13%. From the SHAP calculation, features related to the HAVC (Heating Ventilation and Air Conditioning) system tend to contribute more to affecting the prediction results. (2) The AGE-MOEA-based optimization can identify a set of Pareto optimal solutions in simultaneously minimizing the building energy consumption, CO2 emission, and indoor thermal discomfort degree, arriving at the highest optimization rate of 13.43% under proper adjustment of certain features. (3) In the MOO task, the consideration of model and data uncertainty by prediction intervals and Monte-Carlo simulation can further increase the optimization rate by around 4.0% than the deterministic scenario, resulting in more desired strategies in optimizing the green building performance. In short, this paper enriches the area of green building development. For one thing, it raises the transparency and interpretability of machine learning to make the prediction more convincing. For another, it efficiently determines the passive and active design solutions along with the detailed profile of influential factors for green building design.
科研通智能强力驱动
Strongly Powered by AbleSci AI