已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization

贝叶斯优化 多目标优化 数学优化 集合(抽象数据类型) 计算机科学 帕累托原理 机器学习 人工智能 数学 程序设计语言
作者
Yuxuan Shen,Yue Pan
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120575-120575 被引量:108
标识
DOI:10.1016/j.apenergy.2022.120575
摘要

Supported by the combination of the advanced BIM technique with intelligent algorithms, this paper develops a systematic framework using explainable machine learning and multi-objective optimization to realize the automatic prediction and optimization of building energy performance towards the sustainable development goal. There are three critical parts incorporated, including the DesignBuilder simulation, BO-LGBM (Bayesian optimization-LightGBM) and an explainable method SHAP (SHapley Additive explanation)-based prediction and explanation of building energy performance, and AGE-MOEA algorithm-based multi-objective optimization (MOO) under sources of uncertainty. It has been verified in a case study for green building design. Results show that: (1) The predictive BO-LGBM model can make a highly precise prediction in agreement with the simulation data, reaching up the R2 larger than 93.4% and MAPE smaller than 2.13%. From the SHAP calculation, features related to the HAVC (Heating Ventilation and Air Conditioning) system tend to contribute more to affecting the prediction results. (2) The AGE-MOEA-based optimization can identify a set of Pareto optimal solutions in simultaneously minimizing the building energy consumption, CO2 emission, and indoor thermal discomfort degree, arriving at the highest optimization rate of 13.43% under proper adjustment of certain features. (3) In the MOO task, the consideration of model and data uncertainty by prediction intervals and Monte-Carlo simulation can further increase the optimization rate by around 4.0% than the deterministic scenario, resulting in more desired strategies in optimizing the green building performance. In short, this paper enriches the area of green building development. For one thing, it raises the transparency and interpretability of machine learning to make the prediction more convincing. For another, it efficiently determines the passive and active design solutions along with the detailed profile of influential factors for green building design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mang发布了新的文献求助10
1秒前
大力发布了新的文献求助10
3秒前
akun完成签到,获得积分10
6秒前
科研通AI6应助Chemberry采纳,获得10
6秒前
妖九笙完成签到 ,获得积分10
10秒前
10秒前
丘比特应助景__采纳,获得20
11秒前
舟舟完成签到 ,获得积分10
11秒前
小闫同学完成签到 ,获得积分10
12秒前
13秒前
ding应助明理笑旋采纳,获得10
13秒前
今后应助机灵的老李采纳,获得10
14秒前
iii发布了新的文献求助10
15秒前
xx完成签到 ,获得积分10
17秒前
田様应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
eric888应助科研通管家采纳,获得150
19秒前
TwentyNine完成签到,获得积分10
19秒前
eric888应助科研通管家采纳,获得150
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
19秒前
小丁完成签到 ,获得积分10
21秒前
Thanks完成签到 ,获得积分10
22秒前
浮游应助大力采纳,获得10
22秒前
23秒前
英俊的铭应助大成采纳,获得10
23秒前
我是老大应助TwentyNine采纳,获得10
25秒前
26秒前
wnwn完成签到 ,获得积分10
28秒前
liruihan关注了科研通微信公众号
31秒前
ceeray23发布了新的文献求助20
33秒前
幸运幸福发布了新的文献求助10
33秒前
34秒前
34秒前
38秒前
猫的树完成签到,获得积分20
38秒前
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5160158
求助须知:如何正确求助?哪些是违规求助? 4354342
关于积分的说明 13558222
捐赠科研通 4198390
什么是DOI,文献DOI怎么找? 2302540
邀请新用户注册赠送积分活动 1302628
关于科研通互助平台的介绍 1247933