亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal and Multi-Scale Fusion 3D Object Detection of 4D Radar and LiDAR for Autonomous Driving

激光雷达 雷达 传感器融合 计算机科学 比例(比率) 人工智能 点云 目标检测 算法 计算机视觉 模式识别(心理学) 遥感 物理 地理 量子力学 电信
作者
Li Wang,Xinyu Zhang,Jun Li,Baowei Xv,Rong Fu,Haifeng Chen,Lei Yang,Dafeng Jin,Lijun Zhao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (5): 5628-5641 被引量:21
标识
DOI:10.1109/tvt.2022.3230265
摘要

Multi-modal fusion overcomes the inherent limitations of single-sensor perception in 3D object detection of autonomous driving. The fusion of 4D Radar and LiDAR can boost the detection range and more robust. Nevertheless, different data characteristics and noise distributions between two sensors hinder performance improvement when directly integrating them. Therefore, we are the first to propose a novel fusion method termed $M^{2}$ -Fusion for 4D Radar and LiDAR, based on Multi-modal and Multi-scale fusion. To better integrate two sensors, we propose an Interaction-based Multi-Modal Fusion (IMMF) method utilizing a self-attention mechanism to learn features from each modality and exchange intermediate layer information. Specific to the current single-resolution voxel division's precision and efficiency balance problem, we also put forward a Center-based Multi-Scale Fusion (CMSF) method to first regress the center points of objects and then extract features in multiple resolutions. Furthermore, we present a data preprocessing method based on Gaussian distribution that effectively decreases data noise to reduce errors caused by point cloud divergence of 4D Radar data in the $x$ - $z$ plane. To evaluate the proposed fusion method, a series of experiments were conducted using the Astyx HiRes 2019 dataset, including the calibrated 4D Radar and 16-line LiDAR data. The results demonstrated that our fusion method compared favorably with state-of-the-art algorithms. When compared to PointPillars, our method achieves mAP (mean average precision) increases of 5.64 $\%$ and 13.57 $\%$ for 3D and BEV (bird's eye view) detection of the car class at a moderate level, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
zhc990807发布了新的文献求助10
7秒前
7秒前
16秒前
Pomelo发布了新的文献求助10
23秒前
24秒前
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
25秒前
25秒前
传奇3应助Pomelo采纳,获得10
29秒前
张可完成签到 ,获得积分10
35秒前
37秒前
王小汪应助三五一十五采纳,获得10
38秒前
51秒前
51秒前
遗忘发布了新的文献求助10
53秒前
56秒前
cuncaoxin完成签到,获得积分10
57秒前
学术通zzz发布了新的文献求助10
57秒前
cuncaoxin发布了新的文献求助10
1分钟前
也是难得取个名完成签到 ,获得积分10
1分钟前
等待的蚂蚁完成签到,获得积分20
1分钟前
1分钟前
1分钟前
上官若男应助天真的幼萱采纳,获得10
1分钟前
缥缈若之完成签到,获得积分10
1分钟前
斯寜完成签到,获得积分0
1分钟前
平底锅攻击完成签到 ,获得积分10
1分钟前
feifeiaym发布了新的文献求助10
1分钟前
2分钟前
2分钟前
jjjj完成签到,获得积分10
2分钟前
火山完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Hello应助cici采纳,获得10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815733
求助须知:如何正确求助?哪些是违规求助? 3359299
关于积分的说明 10402104
捐赠科研通 3077165
什么是DOI,文献DOI怎么找? 1690073
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767703