Fully Automated Design Method Based on Reinforcement Learning and Surrogate Modeling for Antenna Array Decoupling

解耦(概率) 计算机科学 强化学习 替代模型 天线(收音机) 天线阵 电子工程 声学 人工智能 控制工程 工程类 电信 物理 机器学习
作者
Zhaohui Wei,Zhao Zhou,Peng Wang,Jian Ren,Yingzeng Yin,Gert Frølund Pedersen,Ming Shen
出处
期刊:IEEE Transactions on Antennas and Propagation [IEEE Antennas & Propagation Society]
卷期号:71 (1): 660-671 被引量:31
标识
DOI:10.1109/tap.2022.3221613
摘要

Modern electromagnetic (EM) device design generally relies on extensive iterative optimizations by designers using simulation software (e.g., CST), which is a very time-consuming and tedious process. To relieve human engineers and boost productivity, we proposed a machine learning (ML) framework to solve the problem of automated design for EM tasks. The proposed approach combines advanced reinforcement learning (RL) algorithms and deep neural networks (DNNs) in an attempt to simulate the decision-making process of human designers to realize automation learning. Specifically, the RL-based agent can interact with the EM design software without engaging human designers, allowing for automated design. Besides, the data accumulated during EM software simulation in the early design stage are reused as training data to build a DNN surrogate model to replace the time-consuming EM simulation and further accelerate the training of RL to achieve better optimization of EM design. Two types of antenna array decoupling including 1\times 2 and 1\times 4 arrays working at 3.5 GHz are used as test vehicles to validate the proposed method. The decoupling metasurfaces designed by the proposed fully automated method based on RL showed satisfactory results comparable to the results achievable by human designers. This indicates that the proposed method can be used to build powerful tools to boost the design efficiency of EM devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pockemon发布了新的文献求助10
3秒前
DijiaXu应助晴空万里采纳,获得10
3秒前
3秒前
5秒前
开朗的鞋子完成签到,获得积分10
5秒前
6秒前
港岛妹妹完成签到,获得积分10
6秒前
慕青应助南梦娇采纳,获得10
8秒前
可爱的哈密瓜完成签到,获得积分10
8秒前
知识四面八方来完成签到 ,获得积分10
8秒前
猪头发布了新的文献求助10
10秒前
倪妮完成签到,获得积分10
11秒前
13秒前
杨钧贺完成签到,获得积分10
14秒前
CipherSage应助wjx采纳,获得30
15秒前
bkagyin应助wjx采纳,获得10
15秒前
16秒前
phy-cg完成签到 ,获得积分10
16秒前
希望天下0贩的0应助、、采纳,获得10
17秒前
安详念蕾发布了新的文献求助10
17秒前
打打应助心若向阳采纳,获得10
18秒前
量子星尘发布了新的文献求助150
18秒前
无花果应助妮妮采纳,获得30
20秒前
我就是柠檬精完成签到,获得积分20
22秒前
Hou_jiaqi发布了新的文献求助50
23秒前
24秒前
CC完成签到,获得积分10
28秒前
、、发布了新的文献求助10
29秒前
30秒前
仁爱的伯云完成签到,获得积分10
31秒前
31秒前
我是老大应助小小采纳,获得10
31秒前
even完成签到 ,获得积分10
33秒前
冷艳馒头发布了新的文献求助20
34秒前
yangqi完成签到,获得积分10
35秒前
临江仙完成签到,获得积分10
35秒前
35秒前
李爱国应助幽默的机器猫采纳,获得10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082690
求助须知:如何正确求助?哪些是违规求助? 4300018
关于积分的说明 13397841
捐赠科研通 4124020
什么是DOI,文献DOI怎么找? 2258613
邀请新用户注册赠送积分活动 1262850
关于科研通互助平台的介绍 1196907