[Origin identification of Gardeniae Fructus based on hyperspectral imaging technology].

VNIR公司 高光谱成像 遥感 光谱带 偏最小二乘回归 预处理器 全光谱成像 模式识别(心理学) 人工智能 数学 计算机科学 地质学 统计
作者
Cong Zhou,Hui Wang,Jian Yang,Xiaobo Zhang
出处
期刊:PubMed 卷期号:47 (22): 6027-6033 被引量:3
标识
DOI:10.19540/j.cnki.cjcmm.20220809.103
摘要

In order to realize rapid and non-destructive identification of the origin of Gardeniae Fructus, a technical method based on hyperspectral imaging technology was established in this study. Spectral information of Gardeniae Fructus samples from eight production origins was acquired from visible NIR(410-990 nm, VNIR) and short wavelength NIR(950-2 500 nm, SWIR) bands based on hyperspectral imaging techniques. The average spectral reflectance within the region of interest was extracted and calculated using the ENVI 5.3 software, resulting in 1 600 sample data. The visible short wavelength infrared band(fused bands) spectral data covering the range 410-2 500 nm were obtained after combining the spectral data of VNIR and SWIR. Data were de-noised by five common preprocessing methods, including multivariate scatter correction, Savitzky-Golay smoothing, standard normal variate, first derivative(FD), and second derivative from VNIR, SWIR, and fused bands(VNIR+SWIR). Partial least squares discriminant analysis, linear support vector classification(LinearSVC), and random forest were used to establish the model for origin identification of Gardeniae Fructus. The results indicated that the identification model of Gardeniae Fructus origin established after FD pretreatment of the spectral data in the fused bands could yield good results. According to the confusion matrix evaluation results, the model prediction set using LinearSVC reached 100% accuracy, so the optimum identification model of Gardeniae Fructus origin was determined as fusion bands-FD-LinearSVC. Therefore, the hyperspectral imaging technology can achieve rapid, nondestructive, and accurate identification of Gardeniae Fructus samples of different origins, which provides a technical reference for the differential detection of Gardeniae Fructus and other Chinese medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaoshasha发布了新的文献求助10
2秒前
3秒前
Brave完成签到,获得积分20
3秒前
4秒前
随性完成签到,获得积分10
5秒前
图图完成签到,获得积分10
5秒前
6秒前
夜雨清痕y发布了新的文献求助10
7秒前
Brave发布了新的文献求助10
11秒前
Davey1220完成签到,获得积分10
15秒前
ningmeng完成签到,获得积分10
17秒前
研友Bn完成签到 ,获得积分10
17秒前
yy完成签到,获得积分10
17秒前
zhaoshasha完成签到,获得积分20
18秒前
24秒前
27秒前
沉默采波完成签到 ,获得积分10
29秒前
czz014发布了新的文献求助10
34秒前
笨笨忘幽发布了新的文献求助10
35秒前
jinghong完成签到 ,获得积分10
36秒前
334niubi666完成签到 ,获得积分10
38秒前
Chandler完成签到,获得积分10
39秒前
科研通AI2S应助WYN采纳,获得10
40秒前
zhoahai完成签到 ,获得积分10
41秒前
畅快芝麻完成签到,获得积分10
42秒前
keep完成签到,获得积分10
47秒前
遇见飞儿完成签到,获得积分10
52秒前
立军发布了新的文献求助10
55秒前
azhou176完成签到,获得积分10
56秒前
57秒前
Hastur00完成签到 ,获得积分10
58秒前
鹏笑完成签到,获得积分10
58秒前
SciGPT应助小天采纳,获得100
58秒前
CC完成签到 ,获得积分10
59秒前
leo完成签到,获得积分10
1分钟前
1分钟前
找寻四氢叶酸完成签到,获得积分10
1分钟前
Thanatos完成签到,获得积分10
1分钟前
你香发布了新的文献求助10
1分钟前
FR完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734