Optimization of spray drying process parameters for the food bioactive ingredients

响应面法 田口方法 工艺工程 工艺优化 实验设计 喷雾干燥 人工神经网络 设计质量 自适应神经模糊推理系统 析因实验 计算机科学 模糊逻辑 机器学习 生物系统 数学 环境科学 人工智能 粒径 工程类 化学 模糊控制系统 色谱法 统计 环境工程 生物 化学工程
作者
Mina Homayoonfal,Narjes Malekjani,Vahid Baeghbali,Elham Ansarifar,Sara Hedayati,Seid Mahdi Jafari
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (17): 5631-5671 被引量:27
标识
DOI:10.1080/10408398.2022.2156976
摘要

AbstractSpray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.HIGHLIGHTSThe quality of spray dried products can be enhanced using different optimization methods.Drying air temperature and flow rate, feed flow rate, wall material concentration, and atomization pressure are the most significant adjustable input variables in the optimization of the spray drying process.Product yield, moisture content, water activity, hygroscopicity, solubility, total color differences, particle size, bulk density, glass transition temperature, encapsulation efficiency, and viability (about probiotics) are the most important output variables in the optimization of the spray drying process.Response surface methodology (RSM), is the most widely used approach in spray drying optimization.Artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) have a great potential in spray drying optimization.Probabilistic methods such as Monte Carlo are able to predict and optimize the spray drying process.Keywords: Artificial neural networksfactorial designfuzzy logicMonte Carlooptimizationresponse surface methodologyTaguchi Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小菇凉发布了新的文献求助10
刚刚
Sky完成签到,获得积分20
刚刚
刚刚
壮观冷卉发布了新的文献求助10
1秒前
xht完成签到,获得积分10
1秒前
科研通AI6应助小鱼采纳,获得10
1秒前
汪汪智完成签到,获得积分10
1秒前
科研通AI5应助General采纳,获得30
2秒前
lily完成签到,获得积分10
2秒前
自由的梦露完成签到,获得积分10
2秒前
3秒前
哭泣青烟发布了新的文献求助10
4秒前
Sky发布了新的文献求助10
4秒前
慕青应助小马采纳,获得10
4秒前
小草完成签到,获得积分20
5秒前
大模型应助nn采纳,获得10
5秒前
6秒前
科研通AI6应助Weiwei采纳,获得20
7秒前
共享精神应助孔涛采纳,获得10
7秒前
万能图书馆应助Ayu采纳,获得10
7秒前
Xie完成签到,获得积分20
7秒前
Jasper应助Ting采纳,获得10
7秒前
8秒前
丰富语儿完成签到,获得积分10
8秒前
酸奶花生完成签到,获得积分10
9秒前
9秒前
认真的雪发布了新的文献求助10
10秒前
10秒前
Ayu完成签到,获得积分10
10秒前
11秒前
树杪完成签到,获得积分10
11秒前
Hello应助bob采纳,获得10
11秒前
11秒前
三问白完成签到,获得积分10
11秒前
酸奶花生发布了新的文献求助10
12秒前
Lucas应助老干部采纳,获得10
12秒前
12秒前
wongcheng完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4895590
求助须知:如何正确求助?哪些是违规求助? 4177439
关于积分的说明 12968084
捐赠科研通 3940612
什么是DOI,文献DOI怎么找? 2161948
邀请新用户注册赠送积分活动 1180309
关于科研通互助平台的介绍 1085892