Optimization of spray drying process parameters for the food bioactive ingredients

响应面法 田口方法 工艺工程 工艺优化 实验设计 喷雾干燥 人工神经网络 设计质量 自适应神经模糊推理系统 析因实验 计算机科学 模糊逻辑 机器学习 生物系统 数学 环境科学 人工智能 粒径 工程类 化学 模糊控制系统 色谱法 统计 环境工程 生物 化学工程
作者
Mina Homayoonfal,Narjes Malekjani,Vahid Baeghbali,Elham Ansarifar,Sara Hedayati,Seid Mahdi Jafari
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:64 (17): 5631-5671 被引量:9
标识
DOI:10.1080/10408398.2022.2156976
摘要

AbstractSpray drying (SD) is one of the most important thermal processes used to produce different powders and encapsulated materials. During this process, quality degradation might happen. The main objective of applying optimization methods in SD processes is maximizing the final nutritional quality of the product besides sensory attributes. Optimization regarding economic issues might be also performed. Applying optimization approaches in line with mathematical models to predict product changes during thermal processes such as SD can be a promising method to enhance the quality of final products. In this review, the application of the response surface methodology (RSM), as the most widely used approach, is introduced along with other optimization techniques such as factorial, Taguchi, and some artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS). Also, probabilistic methods such as Monte Carlo are briefly introduced. Some recent case studies regarding the implementation of these methods in SD processes are also exemplified and discussed.HIGHLIGHTSThe quality of spray dried products can be enhanced using different optimization methods.Drying air temperature and flow rate, feed flow rate, wall material concentration, and atomization pressure are the most significant adjustable input variables in the optimization of the spray drying process.Product yield, moisture content, water activity, hygroscopicity, solubility, total color differences, particle size, bulk density, glass transition temperature, encapsulation efficiency, and viability (about probiotics) are the most important output variables in the optimization of the spray drying process.Response surface methodology (RSM), is the most widely used approach in spray drying optimization.Artificial intelligence-based methods like artificial neural networks (ANN), genetic algorithms (GA), Fuzzy logic, and adaptive neuro-fuzzy inference system (ANFIS) have a great potential in spray drying optimization.Probabilistic methods such as Monte Carlo are able to predict and optimize the spray drying process.Keywords: Artificial neural networksfactorial designfuzzy logicMonte Carlooptimizationresponse surface methodologyTaguchi Disclosure statementThe authors declare no conflicts of interest.Additional informationFundingThe author(s) reported there is no funding associated with the work featured in this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niuniu发布了新的文献求助30
刚刚
八宝完成签到 ,获得积分10
1秒前
yema完成签到 ,获得积分10
1秒前
今后应助jzy采纳,获得30
1秒前
小慧儿完成签到 ,获得积分10
1秒前
2秒前
2秒前
CodeCraft应助生动的凡采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
田様应助dyd采纳,获得10
6秒前
wsh发布了新的文献求助10
8秒前
科研通AI5应助晨曦采纳,获得30
10秒前
呜呼啦呼完成签到 ,获得积分10
11秒前
不安服饰完成签到,获得积分10
12秒前
爱学习的悦悦子完成签到 ,获得积分10
12秒前
Benjamin完成签到 ,获得积分10
13秒前
16秒前
17秒前
17秒前
NANA完成签到,获得积分10
19秒前
21秒前
dyd发布了新的文献求助10
22秒前
老陈发布了新的文献求助10
24秒前
25秒前
Lucas应助激流勇进采纳,获得10
26秒前
调皮盼烟发布了新的文献求助10
28秒前
阳光梦易完成签到 ,获得积分10
28秒前
巴山夜雨完成签到,获得积分10
28秒前
温瞳完成签到,获得积分10
30秒前
阿七完成签到,获得积分10
33秒前
33秒前
LYJ完成签到,获得积分10
35秒前
Likz完成签到,获得积分10
36秒前
爆米花应助364739814采纳,获得10
37秒前
LiuXinping发布了新的文献求助10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780127
求助须知:如何正确求助?哪些是违规求助? 3325442
关于积分的说明 10223131
捐赠科研通 3040629
什么是DOI,文献DOI怎么找? 1668938
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758623