亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Center-based Transfer Feature Learning With Classifier Adaptation for surface defect recognition

分类器(UML) 人工智能 学习迁移 模式识别(心理学) 计算机科学 线性分类器 特征提取 机器学习
作者
Yan Shi,Lei Li,Jun Yang,Yixuan Wang,Songhua Hao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110001-110001 被引量:64
标识
DOI:10.1016/j.ymssp.2022.110001
摘要

Surface defect recognition using Deep Learning based computer vision techniques is an important task in industrial manufacturing. However, surface images have different distributions due to different environments in industrial manufacturing, where the distribution difference between images will degrade the accuracy of Deep Learning based computer vision techniques. In addition, existing Transfer Feature Learning (TFL) methods reduced the distribution difference only by the location parameters of distributions, which ignored the effect of scale parameters in representing the distribution. To overcome these problems, we propose Center-based Transfer Feature Learning with Classifier Adaptation (CTFLCA) for surface defect recognition. First, to eliminate the distribution difference at the feature layer from the location parameters and scale parameters of distributions, we utilize centers as bases to propose the Center-based Transfer Feature Learning method (CTFL) by minimizing Center-based Distribution Difference of Location Parameters (CDDLP) and Center-based Distribution Difference of Scale Parameters (CDDSP). Second, to reduce the distribution difference at the classifier layer from the location parameters and scale parameters, we establish the Center-based Classifier Adaptation method (CCA) using a similar idea of CTFL, where the optimization objective of CCA is formulated by minimizing the classification errors, CDDLP in classification results, and CDDSP in classification results. Next, under the guidance of the class-wise sample selection, we establish CTFLCA for integrating CTFL with CCA. Finally, sufficient results on four datasets (NEU-C, PR-C, Office-Caltech, and ImageCLEF-DA) illustrate the effectiveness of CTFLCA, where the average classification accuracies of CTFLCA are 99.6%, 98.0%, 95.1%, and 91.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sanqainli发布了新的文献求助10
5秒前
拼搏的败完成签到 ,获得积分10
10秒前
黑熊精完成签到,获得积分20
16秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
58秒前
58秒前
小蘑菇应助大方的含桃采纳,获得10
1分钟前
dada完成签到 ,获得积分10
1分钟前
个性归尘给mrlsrain的求助进行了留言
1分钟前
1分钟前
失眠店员发布了新的文献求助10
1分钟前
科目三应助George采纳,获得10
1分钟前
失眠店员完成签到,获得积分10
1分钟前
allrubbish完成签到,获得积分10
1分钟前
1分钟前
彩色幼南发布了新的文献求助10
1分钟前
zhuazhua完成签到 ,获得积分10
2分钟前
汉堡包应助彩色幼南采纳,获得10
2分钟前
ganson完成签到 ,获得积分10
2分钟前
2分钟前
大小罐子发布了新的文献求助10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
3分钟前
无私的含海完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
自行车发布了新的文献求助10
3分钟前
3分钟前
华仔应助kaio_escolar采纳,获得10
3分钟前
追寻奄发布了新的文献求助10
3分钟前
caca完成签到,获得积分0
4分钟前
QiongYin_123完成签到 ,获得积分10
4分钟前
科研通AI5应助Cecilia采纳,获得10
4分钟前
4分钟前
爆米花应助大号采纳,获得10
4分钟前
Cecilia发布了新的文献求助10
4分钟前
烟花应助Estrange采纳,获得10
5分钟前
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827228
求助须知:如何正确求助?哪些是违规求助? 3369590
关于积分的说明 10456499
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251