User Identity Linkage across Social Networks with the Enhancement of Knowledge Graph and Time Decay Function

计算机科学 亲密度 相关性(法律) 图形 身份(音乐) 匹配(统计) 语义相似性 相似性(几何) 情报检索 知识图 理论计算机科学 人工智能 数学 物理 图像(数学) 统计 数学分析 法学 声学 政治学
作者
Hao Gao,Yongqing Wang,Jiangli Shao,Huawei Shen,Xueqi Cheng
出处
期刊:Entropy [MDPI AG]
卷期号:24 (11): 1603-1603 被引量:5
标识
DOI:10.3390/e24111603
摘要

Users participate in multiple social networks for different services. User identity linkage aims to predict whether users across different social networks refer to the same person, and it has received significant attention for downstream tasks such as recommendation and user profiling. Recently, researchers proposed measuring the relevance of user-generated content to predict identity linkages of users. However, there are two challenging problems with existing content-based methods: first, barely considering the word similarities of texts is insufficient where the semantical correlations of named entities in the texts are ignored; second, most methods use time discretization technology, where the texts are divided into different time slices, resulting in failure of relevance modeling. To address these issues, we propose a user identity linkage model with the enhancement of a knowledge graph and continuous time decay functions that are designed for mitigating the influence of time discretization. Apart from modeling the correlations of the words, we extract the named entities in the texts and link them into the knowledge graph to capture the correlations of named entities. The semantics of texts are enhanced through the external knowledge of the named entities in the knowledge graph, and the similarity discrimination of the texts is also improved. Furthermore, we propose continuous time decay functions to capture the closeness of the posting time of texts instead of time discretization to avoid the matching error of texts. We conduct experiments on two real public datasets, and the experimental results show that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
魁梧的傲芙完成签到,获得积分10
2秒前
Watermanlil发布了新的文献求助10
3秒前
3秒前
4秒前
共享精神应助袁浩宇采纳,获得10
5秒前
努力奋斗发布了新的文献求助20
6秒前
Owen应助小池采纳,获得10
6秒前
7秒前
干酪蛋糕完成签到,获得积分10
7秒前
7秒前
shine发布了新的文献求助10
8秒前
8秒前
无极微光应助亦玉采纳,获得20
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
寒冷的雅寒完成签到 ,获得积分10
10秒前
不良帅完成签到,获得积分10
12秒前
12秒前
麦热穆罕完成签到,获得积分10
12秒前
jiangmingjiao发布了新的文献求助10
13秒前
袁浩宇完成签到,获得积分10
14秒前
墨羽发布了新的文献求助10
15秒前
16秒前
16秒前
2987536123完成签到,获得积分10
16秒前
潘祖聪发布了新的文献求助10
17秒前
18秒前
脑洞疼应助杨紫琴采纳,获得10
19秒前
20秒前
20秒前
20秒前
21秒前
21秒前
marongzhi完成签到 ,获得积分10
21秒前
22秒前
隐形曼青应助lemonkim采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458149
求助须知:如何正确求助?哪些是违规求助? 4564260
关于积分的说明 14294271
捐赠科研通 4489098
什么是DOI,文献DOI怎么找? 2458842
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403