摘要
Stargardt's disease (STGD1) is an autosomal recessive juvenile macular degeneration caused by mutations in the ABCA4 gene, impairing clearance of toxic retinoid byproducts in the retinal pigment epithelium (RPE). This leads to lipofuscin accumulation, oxidative stress, photoreceptor degeneration, and central vision loss. Over 1200 pathogenic/likely pathogenic ABCA4 variants highlight the genetic heterogeneity of STGD1, which manifests as progressive central vision loss, with phenotype influenced by deep intronic variants, modifier genes, and environmental factors like light exposure. ABCA4 variants also show variable penetrance and geographical prevalence. With no approved treatment, investigational therapies target different aspects of disease pathology. Small-molecule therapies target vitamin A dimerization (e.g., ALK-001), inhibit lipofuscin accumulation (e.g., soraprazan), or modulate the visual cycle (e.g., emixustat hydrochloride). Gene therapy trials explore ABCA4 supplementation including strategies like RNA exon editing (ACDN-01) and bioengineered ambient light-activated OPSIN. RORA gene therapy (Phase 2/3) addresses oxidative stress, inflammation, lipid metabolism, and complement system dysregulation. Trials like DRAGON (Phase 3, tinlarebant), STARLIGHT (phase 2, bioengineered OPSIN) show promise, but optimizing efficacy remains challenging. With the key problem of establishing genotype-phenotype correlations, the future of STGD1 therapy may rely on approaches targeting oxidative stress, lipid metabolism, inflammation, complement regulation, and genetic repair.