材料科学
电解质
锂(药物)
金属锂
固态
聚合物
金属
接受者
准固态
电子受体
聚合物电解质
化学工程
无机化学
纳米技术
电极
离子电导率
光化学
复合材料
工程物理
冶金
物理化学
化学
内分泌学
工程类
物理
医学
色素敏化染料
凝聚态物理
作者
Conghui Zhang,Linwei Zhao,Fangkun Li,Xin Song,Jiahe Chen,Jun Zeng,Lei Xi,Renzong Hu,Min Zhu,Jun Liu
标识
DOI:10.1002/adma.202513427
摘要
Abstract Solid‐state lithium metal batteries equipped with solid polymer electrolytes (SPEs) are recognized as promising energy storage devices due to their excellent safety and good interfacial contact. However, unstable solid electrolyte interphase (SEI) and sluggish Li + transport kinetics inhibit their practical application. Herein, a bromine‐modified covalent organic framework (Br‐COF) with donor (D)‐acceptor (A) characteristics is designed and incorporated into PVDF‐HFP‐based SPEs to regulate electron density for promoting Li + migration and high stability LiF‐rich SEI formation to solve these problems. The D and A units of Br‐COF are confined in particular locations to create independent electron‐hole transference channels, achieving rapid electron transfer dynamics, thereby promoting TFSI − decomposition to obtain high LiF content SEI. Meanwhile, the strong electron‐withdrawing Br‐group can adsorb the electron from tetra(p‐amino‐phenyl)porphyrin (TAPP) to create an electron‐rich environment, resulting in the regulation of the Li + local coordination environment to facilitate Li + transference. Consequently, Br‐COF@PVDF‐HFP exhibits high ionic conductivity (9.2 × 10 −4 S cm −1 ) and Li + transference number (0.78). Li|Br‐COF@PVDF‐HFP|Li cells achieve excellent cycling life (3000 h) at 0.1 mA cm −2 , and LFP|Br‐COF@PVDF‐HFP|Li and NCM90|Br‐COF@PVDF‐HFP|Li cells can cycle steadily over 2000 cycles and 250 cycles, respectively. This study provides a reference basis for regulating the electron density of PVDF‐HFP‐based SPEs to enhance the performance of solid‐state LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI