Development and validation of a machine learning model to predict postoperative complications following radical gastrectomy for gastric cancer

作者
Zhenmeng Lin,Mingfang Yan,Hai Chen,Shenghong Wei,Yangming Li,Jinliang Jian
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:15: 1606938-1606938 被引量:1
标识
DOI:10.3389/fonc.2025.1606938
摘要

Objective Postoperative complications significantly adversely affect recovery and prognosis following radical gastrectomy for gastric cancer. We developed and validated machine learning (ML) models to predict these complications and constructed a clinically applicable dynamic nomogram. Methods Using a prospectively maintained database, we conducted a retrospective analysis of 1,486 patients from Fujian Cancer Hospital (training cohort) and 498 from the First Hospital of Putian City (validation cohort). Feature selection integrated Lasso regression, the Boruta algorithm, and Recursive Feature Elimination (RFE). Six ML models were developed and evaluated: TreeBagger (TB), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Gaussian Naïve Bayes (GNB), and Artificial Neural Network (ANN). The significant predictors identified were incorporated into a logistic regression model to determine independent risk factors, which then formed the basis of a dynamic nomogram deployed as an interactive web application for clinical use. Results RF demonstrated numerically superior performance among the evaluated models in both cohorts. Independent risk factors included age, BMI, diabetes mellitus, ASA grade, operative time, and surgical approach. The dynamic nomogram achieved AUCs of 0.805 (training) and 0.856 (validation), with calibration curves and decision curve analysis confirming its reliability. DeLong’s test revealed no significant difference in AUC between the RF model and nomogram in either cohort (training: Z = -0.385, p = 0.701; validation: Z = -1.756, p = 0.058). Conclusion While the RF model provided optimal predictive accuracy among ML algorithms, the interpretable nomogram offers comparable discrimination and clinical accessibility. Both tools facilitate the early identification of high-risk patients, enabling personalized interventions to optimize postoperative recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clarie完成签到,获得积分10
刚刚
友好的向日葵完成签到,获得积分10
刚刚
1秒前
CodeCraft应助Thinkol采纳,获得10
1秒前
CR7发布了新的文献求助10
2秒前
健康小宋发布了新的文献求助10
2秒前
蓝天发布了新的文献求助10
2秒前
2秒前
璐鹿娜发布了新的文献求助10
2秒前
虞智闳发布了新的文献求助10
2秒前
xili发布了新的文献求助10
2秒前
CodeCraft应助友好的向日葵采纳,获得10
3秒前
yxj发布了新的文献求助10
3秒前
Disguise完成签到,获得积分10
3秒前
4秒前
tjzhaoll完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
8秒前
今天也要开心Y完成签到,获得积分10
8秒前
8秒前
心灵美的石头完成签到,获得积分10
8秒前
9秒前
林深沉完成签到,获得积分20
9秒前
9秒前
黄耀发布了新的文献求助10
9秒前
9秒前
烤板栗关注了科研通微信公众号
10秒前
NexusExplorer应助CR7采纳,获得10
10秒前
善学以致用应助tjzhaoll采纳,获得10
12秒前
aaa完成签到,获得积分10
12秒前
LG发布了新的文献求助10
12秒前
李狗蛋完成签到 ,获得积分10
12秒前
林深沉发布了新的文献求助10
13秒前
cc应助vin采纳,获得10
13秒前
Thinkol发布了新的文献求助10
13秒前
星星完成签到,获得积分10
14秒前
Lynn发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679087
求助须知:如何正确求助?哪些是违规求助? 4987724
关于积分的说明 15167564
捐赠科研通 4838954
什么是DOI,文献DOI怎么找? 2592922
邀请新用户注册赠送积分活动 1546150
关于科研通互助平台的介绍 1504263