Artificial Intelligence in the Discovery of Deep Eutectic Solvents with Lubricant Applications

作者
João Pedro Moreira dos Santos,Filipe H. B. Sosa,Dinis O. Abranches,João A. P. Coutinho
出处
期刊:ACS omega [American Chemical Society]
卷期号:10 (37): 43024-43033
标识
DOI:10.1021/acsomega.5c05944
摘要

Following evidence suggesting that deep eutectic solvents (DESs) can potentially replace conventional mineral-based lubricants, this study aims to leverage artificial intelligence to discover, and then experimentally prepare and characterize, novel DES-based lubricants. To do so, Gaussian processes (GPs) were employed to describe and predict relevant physicochemical properties of DESs, specifically density, viscosity, and melting temperature. This was accomplished by using a comprehensive data set encompassing nearly 400 different binary and ternary DESs and including 3985, 4197, and 2003 independent data points (different DES compositions and temperatures) for density, viscosity, and melting temperature, respectively. GPs were trained and rigorously evaluated, attaining testing set coefficients of determination of 0.98, 0.92, and 0.94, respectively. GPs were then used to predict the density, viscosity, and melting temperature of all possible binary 1:1 combinations of DES precursors available in the database, yielding more than 50,000 DESs. These DESs with precursors available in our laboratory and that were predicted to be liquid at room temperature, exhibiting either minimal density and minimal viscosity, or maximal density and maximal viscosity, were experimentally prepared and characterized. Good agreement was found between GP predictions and experimental results. Given the identification of DESs with exceptionally low viscosities, a subset of these liquids was selected for tribological evaluation. Finally, tribological tests revealed that several of the tested DESs, such as camphor:octanoic acid, outperformed the reference oil in terms of friction reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzz发布了新的文献求助10
2秒前
jiebai发布了新的文献求助10
3秒前
闪闪的洋葱完成签到,获得积分10
3秒前
mata19发布了新的文献求助10
3秒前
3秒前
情怀应助幸福的小霜采纳,获得10
5秒前
qingchao发布了新的文献求助50
6秒前
7秒前
识衣完成签到,获得积分10
9秒前
9秒前
9秒前
甝虪完成签到,获得积分10
10秒前
蓝天黄土完成签到,获得积分10
11秒前
Hello应助葵花籽采纳,获得10
12秒前
文静人达发布了新的文献求助10
13秒前
噜噜噜完成签到 ,获得积分10
13秒前
李健的小迷弟应助jiebai采纳,获得10
13秒前
卷卷完成签到,获得积分10
13秒前
zym428完成签到,获得积分10
14秒前
lzz完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
18秒前
手残症完成签到,获得积分10
18秒前
snow完成签到,获得积分10
19秒前
19秒前
Ning完成签到,获得积分10
19秒前
xsy完成签到 ,获得积分10
20秒前
万能图书馆应助杨抠脚采纳,获得10
21秒前
hh完成签到 ,获得积分10
22秒前
Z126发布了新的文献求助30
22秒前
识衣发布了新的文献求助10
22秒前
22秒前
23秒前
25秒前
25秒前
Owen应助呼呼呼嘟嘟嘟采纳,获得100
25秒前
26秒前
郭睿关注了科研通微信公众号
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556401
求助须知:如何正确求助?哪些是违规求助? 4640903
关于积分的说明 14663795
捐赠科研通 4582989
什么是DOI,文献DOI怎么找? 2513798
邀请新用户注册赠送积分活动 1488319
关于科研通互助平台的介绍 1459064